The problem of optimal control of a Chaplygin ball by internal rotors
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 4, pp. 837-852.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of optimal control of a Chaplygin ball on a plane by means of 3 internal rotors. Using Pontryagin maximum principle, the equations of extremals are reduced to Hamiltonian equations in group variables. For a spherically symmetric ball, the solutions can be expressed in by elliptic functions.
Keywords: nonholonomic constraint, vaconomic mechanics, optimal control, maximum principle, Hamiltonian.
@article{ND_2012_8_4_a10,
     author = {Sergey V. Bolotin},
     title = {The problem of optimal control of a {Chaplygin} ball by internal rotors},
     journal = {Russian journal of nonlinear dynamics},
     pages = {837--852},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2012_8_4_a10/}
}
TY  - JOUR
AU  - Sergey V. Bolotin
TI  - The problem of optimal control of a Chaplygin ball by internal rotors
JO  - Russian journal of nonlinear dynamics
PY  - 2012
SP  - 837
EP  - 852
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2012_8_4_a10/
LA  - ru
ID  - ND_2012_8_4_a10
ER  - 
%0 Journal Article
%A Sergey V. Bolotin
%T The problem of optimal control of a Chaplygin ball by internal rotors
%J Russian journal of nonlinear dynamics
%D 2012
%P 837-852
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2012_8_4_a10/
%G ru
%F ND_2012_8_4_a10
Sergey V. Bolotin. The problem of optimal control of a Chaplygin ball by internal rotors. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 4, pp. 837-852. http://geodesic.mathdoc.fr/item/ND_2012_8_4_a10/

[1] Agrachev A. A., Sachkov Yu. L., Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005, 392 pp.

[2] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, Editorial URSS, M., 2009, 416 pp. | Zbl

[3] Borisov A. V., Kilin A. A., Mamaev I. S., “Obobschenie preobrazovaniya Chaplygina i yavnoe integrirovanie sharovogo podvesa”, Nelineinaya dinamika, 7:2 (2011), 313–338 | MR

[4] Borisov A. V., Kilin A. A., Mamaev I. S., “Kak upravlyat sharom Chaplygina pri pomoschi rotorov”, Nelineinaya dinamika, 8:2 (2012), 289–307 | MR

[5] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2001, 384 pp. | MR | Zbl

[6] Karateodori K., Variatsionnoe ischislenie i uravneniya v chastnykh proizvodnykh, NITs «RKhD». Institut kompyuternykh issledovanii, M.–Izhevsk, 2012, 552 pp.

[7] Kozlov V. V., “Dinamika sistem s neintegriruemymi svyazyami, 1”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhan., 1982, no. 3, 92–100 | Zbl

[8] Kozlov V. V., “Dinamika sistem s neintegriruemymi svyazyami, 2”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhan., 1982, no. 4, 70–76 | Zbl

[9] Kozlov V. V., “Dinamika sistem s neintegriruemymi svyazyami, 3”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhan., 1983, no. 3, 102–111 | Zbl

[10] Kozlov V. V., “Realizatsiya neintegriruemykh svyazei v klassicheskoi mekhanike”, Dokl. AN SSSR, 272:3 (1983), 550–554 | MR | Zbl

[11] Markeev A. P., “Ob integriruemosti zadachi o kachenii shara s mnogosvyaznoi polostyu, zapolnennoi idealnoi zhidkostyu”, MTT, 21:1 (1986), 64–65

[12] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR

[13] Rashevskii P. K., “O soedinimosti lyubykh dvukh tochek vpolne negolonomnogo prostranstva dopustimoi liniei”, Uchen. zap. Mosk. ped. in-ta im. Libknekhta. Ser. fiz.-mat. nauk, 1938, no. 2, 83–94

[14] Kharlamov P. V., “Kritika nekotorykh matematicheskikh modelei mekhanicheskikh sistem s differentsialnymi svyazyami”, PMM, 56:4 (1992), 692–698 | MR

[15] Borisov A. V., Kilin A. A., Mamaev I. S., “Rolling of a homogeneous ball over a dynamically asymmetric sphere”, Regul. Chaotic Dyn., 16:5 (2011), 465–483 | DOI | MR

[16] Jurdjevich V., Geometric control theory, Cambridge Stud. Adv. Math., 52, Cambridge Univ. Press, Cambridge, 1997, 492 pp. | MR

[17] Kilin A. A., “The dynamics of Chaplygin ball: The qualitative and computer analysis”, Regul. Chaotic Dyn., 6:3 (2001), 291–306 | DOI | MR | Zbl

[18] Lewis A. D., Murray R. M., “Variational principles for constrained systems: Theory and experiment”, Int. J. Nonlinear Mech., 30:6 (1995), 793–815 | DOI | MR | Zbl

[19] Montgomery R., A tour of subriemannian geometries, their geodesics and applications, Math. Surveys and Monogr., 91, AMS, Providence, R. I., 2002, 259 pp. | MR | Zbl