On the nonholonomic Veselova and Chaplygin systems
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 3, pp. 541-547.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the trajectory equivalence of the Chaplygin sphere problem, the Veselova system on $e^*(3)$ and a Hamiltonian system on two-dimensional sphere with the non-standard metric.
Keywords: nonholonomic systems
Mots-clés : Poisson brackets.
@article{ND_2012_8_3_a8,
     author = {Andrey V. Tsiganov},
     title = {On the nonholonomic {Veselova} and {Chaplygin} systems},
     journal = {Russian journal of nonlinear dynamics},
     pages = {541--547},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2012_8_3_a8/}
}
TY  - JOUR
AU  - Andrey V. Tsiganov
TI  - On the nonholonomic Veselova and Chaplygin systems
JO  - Russian journal of nonlinear dynamics
PY  - 2012
SP  - 541
EP  - 547
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2012_8_3_a8/
LA  - ru
ID  - ND_2012_8_3_a8
ER  - 
%0 Journal Article
%A Andrey V. Tsiganov
%T On the nonholonomic Veselova and Chaplygin systems
%J Russian journal of nonlinear dynamics
%D 2012
%P 541-547
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2012_8_3_a8/
%G ru
%F ND_2012_8_3_a8
Andrey V. Tsiganov. On the nonholonomic Veselova and Chaplygin systems. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 3, pp. 541-547. http://geodesic.mathdoc.fr/item/ND_2012_8_3_a8/

[1] Borisov A. V., Mamaev I. S., “Gamiltonovost zadachi Chaplygina o kachenii shara”, Matem. zametki, 70:5 (2001), 793–795 | DOI | MR | Zbl

[2] Borisov A. V., Mamaev I. S., Sovremennye metody teorii integriruemykh sistem, Inst. kompyutern. issled., M.–Izhevsk, 2003, 296 pp. | MR

[3] Borisov A. V., Mamaev I. S., “Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems”, Regul. Chaotic Dyn., 13:5 (2008), 443–490 | DOI | MR | Zbl

[4] Borisov A. V., Kilin A. A., Mamaev I. S., “Obobschenie preobrazovaniya Chaplygina i yavnoe integrirovanie sharovogo podvesa”, Nelineinaya dinamika, 7:2 (2011), 313–338 | MR

[5] Borisov A. V., Mamaev I. S., Kilin A. A., Izbrannye zadachi negolonomnoi mekhaniki, Preprint http://ics.org.ru/doc?book=30&dir=r

[6] Veselova L. E., “Novye sluchai integriruemosti uravnenii dvizheniya tverdogo tela pri nalichii negolonomnoi svyazi”, Geometriya, differentsialnye uravneniya i mekhanika, Sb. st., eds. V. V. Kozlov, A. T. Fomenko, MGU, M., 1986, 64–68 | MR

[7] Veselov A. P., Veselova L. E., “Integriruemye negolonomnye sistemy na gruppakh Li”, Matem. zametki, 44:5 (1988), 604–619 | MR

[8] Chaplygin S. A., “O katanii shara po gorizontalnoi ploskosti”, Matem. sb., 24 (1903), 139–168 ; Чаплыгин С. А., Собр. соч., т. 1, ОГИЗ, М.–Л., 1948, 76–101

[9] Fedorov Yu. N., “O dvukh integriruemykh negolonomnykh sistemakh v klassicheskoi dinamike”, Vestn. MGU. Ser. Matem. Mekhan., 1989, no. 4, 38–41 | MR | Zbl

[10] Marikhin V. G., Sokolov V. V., “O privedenii pary kvadratichnykh po impulsam gamiltonianov k kanonicheskoi forme i o veschestvennom chastichnom razdelenii peremennykh dlya volchka Klebsha”, Nelineinaya dinamika, 4:3 (2008), 313–332