On quadratic integral Poincare--Zhukovsky's equations
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 3, pp. 523-540
Voir la notice de l'article provenant de la source Math-Net.Ru
For Poincaré–Zhukovsky's equations with non-diagonal matrices in the Hamiltonian, we obtain conditions for existence of the quadratic integral $(\mathbf{YS}, \mathbf{K}) = \mathrm{const}$ and the explisit form of it. It is shown that if the integral exists, then the equations reduce to the Schottky's case.
Keywords:
Poincaré–Zhukovsky's equations, quadratic integral
Mots-clés : non-diagonal matrices, Schottky's case.
Mots-clés : non-diagonal matrices, Schottky's case.
@article{ND_2012_8_3_a7,
author = {Vladimir Yu. Ol'shanskii},
title = {On quadratic integral {Poincare--Zhukovsky's} equations},
journal = {Russian journal of nonlinear dynamics},
pages = {523--540},
publisher = {mathdoc},
volume = {8},
number = {3},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ND_2012_8_3_a7/}
}
Vladimir Yu. Ol'shanskii. On quadratic integral Poincare--Zhukovsky's equations. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 3, pp. 523-540. http://geodesic.mathdoc.fr/item/ND_2012_8_3_a7/