A Poisson's bracket of a point motion on a surface
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 3, pp. 519-522.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we deal with equations of a point motion on a surface in the Hamiltonian form in redundant coordinates. We also give explicit formulae of the Poisson's bracket.
Keywords: hamiltonian systems, equations in surplus coordinates.
Mots-clés : Poisson's bracket
@article{ND_2012_8_3_a6,
     author = {Mars N. Davletshin},
     title = {A {Poisson's} bracket of a point motion on a surface},
     journal = {Russian journal of nonlinear dynamics},
     pages = {519--522},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2012_8_3_a6/}
}
TY  - JOUR
AU  - Mars N. Davletshin
TI  - A Poisson's bracket of a point motion on a surface
JO  - Russian journal of nonlinear dynamics
PY  - 2012
SP  - 519
EP  - 522
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2012_8_3_a6/
LA  - ru
ID  - ND_2012_8_3_a6
ER  - 
%0 Journal Article
%A Mars N. Davletshin
%T A Poisson's bracket of a point motion on a surface
%J Russian journal of nonlinear dynamics
%D 2012
%P 519-522
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2012_8_3_a6/
%G ru
%F ND_2012_8_3_a6
Mars N. Davletshin. A Poisson's bracket of a point motion on a surface. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 3, pp. 519-522. http://geodesic.mathdoc.fr/item/ND_2012_8_3_a6/

[1] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, Editorial URSS, M., 2009, 416 pp. | Zbl

[2] Kozlov V. V., Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, UdGU, Izhevsk, 1995, 432 pp. | MR

[3] Suslov G. K., Teoreticheskaya mekhanika, Gostekhizdat, M.–L., 1946, 655 pp.

[4] Borisov A. V., Mamaev I. S., Puassonovy struktury i algebry Li v gamiltonovoi mekhanike, UdGU, Izhevsk, 1999, 464 pp. | MR

[5] Borisov A. V., Mamaev I. S., “Skobki Diraka v geometrii i mekhanike”: Dirak P. A. M., Lektsii po kvantovoi mekhanike, RKhD, Izhevsk, 1998, 191–226

[6] Mozer Yu., Integriruemye gamiltonovy sistemy i spektralnaya teoriya, RKhD, Izhevsk, 1999, 296 pp.