A Poisson's bracket of a point motion on a surface
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 3, pp. 519-522
Cet article a éte moissonné depuis la source Math-Net.Ru
In this article we deal with equations of a point motion on a surface in the Hamiltonian form in redundant coordinates. We also give explicit formulae of the Poisson's bracket.
Keywords:
hamiltonian systems, equations in surplus coordinates.
Mots-clés : Poisson's bracket
Mots-clés : Poisson's bracket
@article{ND_2012_8_3_a6,
author = {Mars N. Davletshin},
title = {A {Poisson's} bracket of a point motion on a surface},
journal = {Russian journal of nonlinear dynamics},
pages = {519--522},
year = {2012},
volume = {8},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ND_2012_8_3_a6/}
}
Mars N. Davletshin. A Poisson's bracket of a point motion on a surface. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 3, pp. 519-522. http://geodesic.mathdoc.fr/item/ND_2012_8_3_a6/
[1] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, Editorial URSS, M., 2009, 416 pp. | Zbl
[2] Kozlov V. V., Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, UdGU, Izhevsk, 1995, 432 pp. | MR
[3] Suslov G. K., Teoreticheskaya mekhanika, Gostekhizdat, M.–L., 1946, 655 pp.
[4] Borisov A. V., Mamaev I. S., Puassonovy struktury i algebry Li v gamiltonovoi mekhanike, UdGU, Izhevsk, 1999, 464 pp. | MR
[5] Borisov A. V., Mamaev I. S., “Skobki Diraka v geometrii i mekhanike”: Dirak P. A. M., Lektsii po kvantovoi mekhanike, RKhD, Izhevsk, 1998, 191–226
[6] Mozer Yu., Integriruemye gamiltonovy sistemy i spektralnaya teoriya, RKhD, Izhevsk, 1999, 296 pp.