Reduplication of chaotic attractors and construction of compound multiattractors
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 3, pp. 483-496.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with a method for forming compound (composite) chaotic multiattractors using the Lorentz equations as an example. These multiattractors are a union of several local attractors which are copies of some initial chaotic attractor.
Keywords: nonlinear dynamic system, autostochastic system, chaotic attractor, Lorentz attractor, compound multiattractor, metastable attractor, multisegment nonlinearity, intermittency, chaotic switchings, reduplication operator.
@article{ND_2012_8_3_a3,
     author = {Vadim G. Prokopenko},
     title = {Reduplication of chaotic attractors and construction of compound multiattractors},
     journal = {Russian journal of nonlinear dynamics},
     pages = {483--496},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2012_8_3_a3/}
}
TY  - JOUR
AU  - Vadim G. Prokopenko
TI  - Reduplication of chaotic attractors and construction of compound multiattractors
JO  - Russian journal of nonlinear dynamics
PY  - 2012
SP  - 483
EP  - 496
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2012_8_3_a3/
LA  - ru
ID  - ND_2012_8_3_a3
ER  - 
%0 Journal Article
%A Vadim G. Prokopenko
%T Reduplication of chaotic attractors and construction of compound multiattractors
%J Russian journal of nonlinear dynamics
%D 2012
%P 483-496
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2012_8_3_a3/
%G ru
%F ND_2012_8_3_a3
Vadim G. Prokopenko. Reduplication of chaotic attractors and construction of compound multiattractors. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 3, pp. 483-496. http://geodesic.mathdoc.fr/item/ND_2012_8_3_a3/

[1] Arnold V. I., Aifromovich V. S., Ilyashenko Yu. S., Shilnikov L. P., “Teoriya bifurkatsii”, Dinamicheskie sistemy-5, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 5, ed. V. I. Arnold, VINITI, M., 1986, 5–218

[2] Malinetskii N. A., Sidorov S. V., Novye metody khaoticheskoi dinamiki, Editorial URSS, M., 1984, 320 pp.

[3] Pomeau Y., Manneville P., “Intermittent transition to turbulence in dissipative dynamical systems”, Comm. Math. Phys., 74 (1980), 189–197 | DOI | MR

[4] Kim C.-M., Yim G.-S., Kim Y. S., Kim J.-M., Lee H. W., “Experimental evidence of characteristic relations of type-I intermittency in an electronic circuit”, Phys. Rev. E, 56:3 (1997), 2573–2577 | DOI

[5] Baptista M. S., Caldas I. L., “Type-II intermittency in the driven double scroll circuit”, Phys. D, 132 (1999), 325–338 | DOI | Zbl

[6] Ringuet E., Rozé C., Gouesbet G., “Experimental observation of type-II intermittency in a hydrodynamic system”, Phys. Rev. E, 47:2 (1993), 1405–1407 | DOI

[7] Kye W.-H., Rim S., Kim C.-M., Lee J.-H., Ryu J.-W., Yeom B.-S., Park Y.-J., “Experimental observation of characteristic relations of type-III intermittency in the presence of noise in a simple electronic circuit”, Phys. Rev. E, 68 (2003), 036203, 5 pp. | DOI

[8] Laugesen J., Mosekilde E., Bountis E., Kuznetsov S. P., “Type-II intermittency in a class of two coupled one-dimensional maps”, Discrete Dyn. Nat. Soc., 5 (2000), 233–245 | DOI | Zbl

[9] de S. Cavalcante H. L. D., Rios Leite J. R., “Averages and critical exponents in type-III intermittent chaos”, Phys. Rev. E, 66 (2002), 026210, 5

[10] Anischenko V. S., Neiman A. B., “Uvelichenie dlitelnosti korrelyatsii pri peremezhaemosti tipa «khaos–khaos»”, Pisma v ZhTF, 13:17 (1987), 1063–1066

[11] Anischenko V. S., “Vzaimodeistvie strannykh attraktorov. Peremezhaemost «khaos–khaos»”, Pisma v ZhTF, 10:10 (1984), 629–633

[12] Afraimovich V. S., Rabinovich M. I., Ugodnikov A. D., “Kriticheskie tochki i «fazovye perekhody» v stokhasticheskom povedenii neavtonomnogo angarmonicheskogo ostsillyatora”, Pisma v ZhETF, 38:2 (1983), 64–67

[13] Dmitriev A. S., Kislov V. Ya., Starkov S. O., “Eksperimentalnoe issledovanie obrazovaniya i vzaimodeistviya strannykh attraktorov v koltsevom avtogeneratore”, ZhTF, 55:12 (1985), 2417–2419

[14] Anischenko V. S., Slozhnye kolebaniya v prostykh sistemakh, Nauka. Fizmatlit, M., 1990, 312 pp. | MR

[15] Khovanov I. A., Anischenko V. S., “Vozdeistvie periodicheskogo signala na srednyuyu chastotu pereklyuchenii khaoticheskoi bistabilnoi sistemy”, Radiotekhnika i elektronika, 42:7 (1997), 823–827

[16] Anischenko V. S., Neiman A. B., Moss F., Shimanskii-Gaer L., “Stokhasticheskii rezonans kak indutsirovannyi shumom effekt uvelicheniya stepeni poryadka”, UFN, 169 (1999), 7–38 | DOI

[17] Prokopenko V. G., “Dinamicheskii analog skhemy Chua s mnogosegmentnoi nelineinostyu”, Dokl. RAN, 396:3 (2004), 317–323 | Zbl

[18] Prokopenko V. G., “Statisticheskie kharakteristiki khaoticheskikh kolebanii v avtostokhasticheskikh sistemakh s mnogosegmentnoi nelineinostyu”, Vestn. MGTU im. N. E. Baumana. Ser. Estestvennye nauki, 2010, no. 4, 106–119

[19] Prokopenko V. G., Generator khaoticheskikh kolebanii, Patent RF na izobretenie No 2403672 ot 10.11.2010, byul. 31

[20] Prokopenko V. G., Generator khaoticheskikh kolebanii, Patent RF na izobretenie No 2421877 ot 20.06.2011, byul. 17

[21] Prokopenko V. G., “Khaoticheskie avtokolebaniya v avtostokhasticheskikh sistemakh s gladkoi mnogosegmentnoi nelineinostyu”, Vestn. MGTU im. N. E. Baumana. Ser. Estestvennye nauki, 2012, no. 1, 93–105

[22] Lorenz E. N., “Deterministic nonperiodic flow”, J. Atmospheric Sci., 20 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[23] Postnov D. E., Balanov A. G., Chernyakov V. I., “Sinkhronizatsiya i khaos v modelyakh dinamiki populyatsii”, Izv. vuzov. PND, 5:1 (1997), 54–68