Mots-clés : bifurcations
@article{ND_2012_8_3_a2,
author = {Alexander P. Kuznetsov and Mikhail V. Pozdnyakov and Julia V. Sedova},
title = {Coupled universal maps demonstrating {Neimark{\textendash}Saker} bifurcation},
journal = {Russian journal of nonlinear dynamics},
pages = {473--482},
year = {2012},
volume = {8},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ND_2012_8_3_a2/}
}
TY - JOUR AU - Alexander P. Kuznetsov AU - Mikhail V. Pozdnyakov AU - Julia V. Sedova TI - Coupled universal maps demonstrating Neimark–Saker bifurcation JO - Russian journal of nonlinear dynamics PY - 2012 SP - 473 EP - 482 VL - 8 IS - 3 UR - http://geodesic.mathdoc.fr/item/ND_2012_8_3_a2/ LA - ru ID - ND_2012_8_3_a2 ER -
Alexander P. Kuznetsov; Mikhail V. Pozdnyakov; Julia V. Sedova. Coupled universal maps demonstrating Neimark–Saker bifurcation. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 3, pp. 473-482. http://geodesic.mathdoc.fr/item/ND_2012_8_3_a2/
[1] Kuznetsov Yu. A., Elements of applied bifurcation theory, Springer, New York, 1998, 614 pp. | MR
[2] Meijer H. G. E., Codimension $2$ bifurcations of iterated maps, PhD Thesis, Utrecht Univ., 2006 http://igitur-archive.library.uu.nl/dissertations/2006-1204-200716/index.htm
[3] Anischenko V. S., Nikolaev S. M., “Generator kvaziperiodicheskikh kolebanii: Bifurkatsiya udvoeniya dvumernogo tora”, Pisma v ZhTF, 31:19 (2005), 88–94
[4] Anishchenko V. S., Nikolaev S. M., Kurths J., “Winding number locking on a two-dimensional torus: Synchronization of quasiperiodic motions”, Phys. Rev. E, 73:5 (2006), 056202, 8 pp. | DOI | MR
[5] Anischenko V. S., Nikolaev S. M., “Ustoichivost, sinkhronizatsiya i razrushenie kvaziperiodicheskikh kolebanii”, Nelineinaya dinamika, 2:3 (2006), 267–278
[6] Kuznetsov A. P., Kuznetsov S. P., Stankevich N. V., “Avtonomnyi generator kvaziperiodicheskikh kolebanii”, PND, 18:2 (2010), 51–61 | Zbl
[7] Kuznetsov A. P., Kuznetsov S. P., Stankevich N. V., “A simple autonomous quasiperiodic self-oscillator”, Commun. Nonlinear Sci. Numer. Simul., 15:6 (2010), 1676–1681 | DOI
[8] Vitolo R., Broer N., Simó S., “Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems”, Regul. Chaotic Dyn., 16:1–2 (2011), 154–184 | DOI | MR | Zbl
[9] Kuznetsov A. P., Kuznetsov S. P., Pozdnyakov M. V., Sedova Yu. V., “Universalnoe dvumernoe otobrazhenie i ego radiofizicheskaya realizatsiya”, Nelineinaya dinamika, 8:3 (2012), 461–471
[10] Kuznetsov S. P., “Universalnost i podobie v povedenii svyazannykh sistem Feigenbauma”, Izv. vuzov. Radiofizika, 28:8 (1985), 991–1007 | MR
[11] Kuznetsov A. P., Sataev I. R., Tyuryukina L. V., “Sinkhronizatsiya i mnogochastotnye kolebaniya v tsepochke fazovykh ostsillyatorov”, Nelineinaya dinamika, 6:4 (2010), 693–717
[12] Kuznetsov A. P., Sataev I. R., Tyuryukina L. V., “Vynuzhdennaya sinkhronizatsiya dvukh svyazannykh avtokolebatelnykh ostsillyatorov Van der Polya”, Nelineinaya dinamika, 7:3 (2011), 411–425
[13] Baesens S., Guckenheimer J., Kim S., MacKay R. S., “Three coupled oscillators: Mode locking, global bifurcations and toroidal chaos”, Phys. D, 49:3 (1991), 387–475 | DOI | MR | Zbl
[14] Froeschlé S., Lega E., Guzzo M., “Analysis of the chaotic behaviour of orbits diffusing along the Arnold web”, Celestial Mech. Dynam. Astronom., 95:1–4 (2006), 141–153 | DOI | MR | Zbl
[15] Guzzo M., Lega E., Froeschlé S., “First numerical evidence of global Arnold diffusion in quasi-integrable systems”, Discrete Contin. Dyn. Syst. Ser. B, 5:3 (2005), 687–698 | DOI | MR | Zbl
[16] Broer H., Simó C., Vitolo R., “The Hopf-saddle-node bifurcation for fixed points of $3$D-diffeomorphisms: The Arnol'd resonance web”, Bull. Belg. Math. Soc. Simon Stevin, 15:5 (2008), 769–787 | MR | Zbl