Coupled universal maps demonstrating Neimark--Saker bifurcation
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 3, pp. 473-482.

Voir la notice de l'article provenant de la source Math-Net.Ru

We examine the dynamics of the coupled system consisting of subsystems, demonstrating the Neimark–Sacker bifurcation. The study of coupled maps on the plane of the parameters responsible for such bifurcation in the individual subsystems is realized. On the plane of parameters characterizing the rotation numbers of the individual subsystems we reveal the complex structures consisting of the quasi-periodic modes of different dimensions and the exact periodic resonances of different orders.
Keywords: maps, phenomena of quasiperiodicity.
Mots-clés : bifurcations
@article{ND_2012_8_3_a2,
     author = {Alexander P. Kuznetsov and Mikhail V. Pozdnyakov and Julia V. Sedova},
     title = {Coupled universal maps demonstrating {Neimark--Saker} bifurcation},
     journal = {Russian journal of nonlinear dynamics},
     pages = {473--482},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2012_8_3_a2/}
}
TY  - JOUR
AU  - Alexander P. Kuznetsov
AU  - Mikhail V. Pozdnyakov
AU  - Julia V. Sedova
TI  - Coupled universal maps demonstrating Neimark--Saker bifurcation
JO  - Russian journal of nonlinear dynamics
PY  - 2012
SP  - 473
EP  - 482
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2012_8_3_a2/
LA  - ru
ID  - ND_2012_8_3_a2
ER  - 
%0 Journal Article
%A Alexander P. Kuznetsov
%A Mikhail V. Pozdnyakov
%A Julia V. Sedova
%T Coupled universal maps demonstrating Neimark--Saker bifurcation
%J Russian journal of nonlinear dynamics
%D 2012
%P 473-482
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2012_8_3_a2/
%G ru
%F ND_2012_8_3_a2
Alexander P. Kuznetsov; Mikhail V. Pozdnyakov; Julia V. Sedova. Coupled universal maps demonstrating Neimark--Saker bifurcation. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 3, pp. 473-482. http://geodesic.mathdoc.fr/item/ND_2012_8_3_a2/

[1] Kuznetsov Yu. A., Elements of applied bifurcation theory, Springer, New York, 1998, 614 pp. | MR

[2] Meijer H. G. E., Codimension $2$ bifurcations of iterated maps, PhD Thesis, Utrecht Univ., 2006 http://igitur-archive.library.uu.nl/dissertations/2006-1204-200716/index.htm

[3] Anischenko V. S., Nikolaev S. M., “Generator kvaziperiodicheskikh kolebanii: Bifurkatsiya udvoeniya dvumernogo tora”, Pisma v ZhTF, 31:19 (2005), 88–94

[4] Anishchenko V. S., Nikolaev S. M., Kurths J., “Winding number locking on a two-dimensional torus: Synchronization of quasiperiodic motions”, Phys. Rev. E, 73:5 (2006), 056202, 8 pp. | DOI | MR

[5] Anischenko V. S., Nikolaev S. M., “Ustoichivost, sinkhronizatsiya i razrushenie kvaziperiodicheskikh kolebanii”, Nelineinaya dinamika, 2:3 (2006), 267–278

[6] Kuznetsov A. P., Kuznetsov S. P., Stankevich N. V., “Avtonomnyi generator kvaziperiodicheskikh kolebanii”, PND, 18:2 (2010), 51–61 | Zbl

[7] Kuznetsov A. P., Kuznetsov S. P., Stankevich N. V., “A simple autonomous quasiperiodic self-oscillator”, Commun. Nonlinear Sci. Numer. Simul., 15:6 (2010), 1676–1681 | DOI

[8] Vitolo R., Broer N., Simó S., “Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems”, Regul. Chaotic Dyn., 16:1–2 (2011), 154–184 | DOI | MR | Zbl

[9] Kuznetsov A. P., Kuznetsov S. P., Pozdnyakov M. V., Sedova Yu. V., “Universalnoe dvumernoe otobrazhenie i ego radiofizicheskaya realizatsiya”, Nelineinaya dinamika, 8:3 (2012), 461–471

[10] Kuznetsov S. P., “Universalnost i podobie v povedenii svyazannykh sistem Feigenbauma”, Izv. vuzov. Radiofizika, 28:8 (1985), 991–1007 | MR

[11] Kuznetsov A. P., Sataev I. R., Tyuryukina L. V., “Sinkhronizatsiya i mnogochastotnye kolebaniya v tsepochke fazovykh ostsillyatorov”, Nelineinaya dinamika, 6:4 (2010), 693–717

[12] Kuznetsov A. P., Sataev I. R., Tyuryukina L. V., “Vynuzhdennaya sinkhronizatsiya dvukh svyazannykh avtokolebatelnykh ostsillyatorov Van der Polya”, Nelineinaya dinamika, 7:3 (2011), 411–425

[13] Baesens S., Guckenheimer J., Kim S., MacKay R. S., “Three coupled oscillators: Mode locking, global bifurcations and toroidal chaos”, Phys. D, 49:3 (1991), 387–475 | DOI | MR | Zbl

[14] Froeschlé S., Lega E., Guzzo M., “Analysis of the chaotic behaviour of orbits diffusing along the Arnold web”, Celestial Mech. Dynam. Astronom., 95:1–4 (2006), 141–153 | DOI | MR | Zbl

[15] Guzzo M., Lega E., Froeschlé S., “First numerical evidence of global Arnold diffusion in quasi-integrable systems”, Discrete Contin. Dyn. Syst. Ser. B, 5:3 (2005), 687–698 | DOI | MR | Zbl

[16] Broer H., Simó C., Vitolo R., “The Hopf-saddle-node bifurcation for fixed points of $3$D-diffeomorphisms: The Arnol'd resonance web”, Bull. Belg. Math. Soc. Simon Stevin, 15:5 (2008), 769–787 | MR | Zbl