Falling motion of a circular cylinder interacting dynamically with a point vortex
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 3, pp. 617-628.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a system which consists of a heavy circular cylinder and a point vortex in an unbounded volume of ideal liquid. The liquid is assumed to be irrotational and at rest at infinity. The circulation about the cylinder is different from zero. The governing equations are Hamiltonian and admit an evident integral of motion — the horizontal component of the momentum. Using the integral we reduce the order and thereby obtain a system with two degrees of freedom. Most remarkable types of partial solutions of the system are presented and stability of equilibrium solutions is investigated.
Keywords: point vortices, Hamiltonian systems, reduction, stability of equilibrium solutions.
@article{ND_2012_8_3_a13,
     author = {Sergey V. Sokolov and Sergey M. Ramodanov},
     title = {Falling motion of a circular cylinder interacting dynamically with a point vortex},
     journal = {Russian journal of nonlinear dynamics},
     pages = {617--628},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2012_8_3_a13/}
}
TY  - JOUR
AU  - Sergey V. Sokolov
AU  - Sergey M. Ramodanov
TI  - Falling motion of a circular cylinder interacting dynamically with a point vortex
JO  - Russian journal of nonlinear dynamics
PY  - 2012
SP  - 617
EP  - 628
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2012_8_3_a13/
LA  - ru
ID  - ND_2012_8_3_a13
ER  - 
%0 Journal Article
%A Sergey V. Sokolov
%A Sergey M. Ramodanov
%T Falling motion of a circular cylinder interacting dynamically with a point vortex
%J Russian journal of nonlinear dynamics
%D 2012
%P 617-628
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2012_8_3_a13/
%G ru
%F ND_2012_8_3_a13
Sergey V. Sokolov; Sergey M. Ramodanov. Falling motion of a circular cylinder interacting dynamically with a point vortex. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 3, pp. 617-628. http://geodesic.mathdoc.fr/item/ND_2012_8_3_a13/

[1] Maxwell J. K., “On a particular case of descent of a heavy body in a resisting medium”, Cambridge and Dublin Math. Journ., 9 (1854), 145–148

[2] Zhukovskii N. E., “O padenii v vozdukhe legkikh prodolgovatykh tel, vraschayuschikhsya okolo svoei prodolnoi osi. Statya pervaya”, Sobr. soch., V 7 tt., v. 5, Glav. red. aviats. lit., M.–L., 1937, 72–80

[3] Zhukovskii N. E., “O padenii v vozdukhe legkikh prodolgovatykh tel, vraschayuschikhsya okolo svoei prodolnoi osi. Statya vtoraya”, Sobr. soch., V 7 tt., v. 5, Glav. red. aviats. lit., M.–L., 1937, 100–115

[4] Kozlov V. V., “K zadache o padenii tyazhelogo tverdogo tela v soprotivlyayuscheisya srede”, Vestn. Mosk. un-ta. Ser. Matem. Mekhan., 1990, no. 1, 79–86 | Zbl

[5] Jones M. A., Shelly M. J., “Falling cards”, J. Fluid Mech., 540 (2005), 393–425 | DOI | MR | Zbl

[6] Michelin S., Smith S. G. L., “Falling cards and flapping flags: Understanding fluid-solid interaction using an unsteady point vortex model”, Theor. Comput. Fluid Dyn., 24 (2010), 195–200 | DOI | Zbl

[7] Chaplygin S. A., “O dvizhenii tyazhelykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch., v. 1, AN SSSR, M.–L., 1933, 133–150

[8] Kozlov V. V., “O padenii tyazhelogo tsilindricheskogo tverdogo tela v zhidkosti”, MTT, 1993, no. 4, 113–117

[9] Ramodanov S. M., “O vliyanii tsirkulyatsii na kharakter padeniya tyazhelogo tverdogo tela v zhidkosti”, MTT, 1996, no. 5, 19–24

[10] Ramodanov S. M., “Motion of a circular cylinder and a vortex in an ideal fluid”, Regul. Chaotic Dyn., 6:1 (2001), 33–38 | DOI | MR | Zbl

[11] Borisov A. V., Mamaev I. S., “An integrability of the problem on motion of cylinder and vortex in the ideal fluid”, Regul. Chaotic Dyn., 8:2 (2003), 163–166 | DOI | MR | Zbl

[12] Borisov A. V., Mamaev I. S., Ramodanov S. M., “Dynamics of a circular cylinder interacting with point vortices”, Discrete Contin. Dyn. Syst. Ser. B, 5:1 (2005), 35–50 | MR | Zbl

[13] Shashikanth B. N., Marsden J. E., Burdick J. W., Kelly S. D., “The Hamiltonian structure of a 2D rigid circular cylinder interacting dynamically with $N$ point vortices”, Phys. Fluids, 14 (2002), 1214–1227 | DOI | MR | Zbl

[14] Kadtke J. B., Novikov E. A., “Chaotic capture of vortices by a moving body. 1: The single point vortex case”, Chaos, 3:4 (1993), 543–553 | DOI | MR | Zbl

[15] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Bifurkatsionnyi analiz i indeks Konli v mekhanike”, Nelineinaya dinamika, 7:3 (2011), 649–681

[16] Borisov A. V., Kozlov V. V., Mamaev I. S., “Asymptotic stability and associated problems of failing rigid body”, Regul. Chaotic Dyn., 12:5 (2007), 531–565 | DOI | MR | Zbl

[17] Tanabe Y., Kaneko K., “Behavior of a falling paper”, Phys. Rev. Lett., 73:10 (1994), 1372–1375 | DOI | MR

[18] Kirkhgof G., Mekhanika. Lektsii po matematicheskoi fizike, AN SSSR, M., 1962, 404 pp.

[19] Borisov A. V., Mamaev I. S., “On the motion of a heavy rigid body in an ideal fluid with circulation”, Chaos, 16:1 (2006), 013118, 7 pp. | DOI | MR | Zbl