Falling motion of a circular cylinder interacting dynamically with a point vortex
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 3, pp. 617-628

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a system which consists of a heavy circular cylinder and a point vortex in an unbounded volume of ideal liquid. The liquid is assumed to be irrotational and at rest at infinity. The circulation about the cylinder is different from zero. The governing equations are Hamiltonian and admit an evident integral of motion — the horizontal component of the momentum. Using the integral we reduce the order and thereby obtain a system with two degrees of freedom. Most remarkable types of partial solutions of the system are presented and stability of equilibrium solutions is investigated.
Keywords: point vortices, Hamiltonian systems, reduction, stability of equilibrium solutions.
@article{ND_2012_8_3_a13,
     author = {Sergey V. Sokolov and Sergey M. Ramodanov},
     title = {Falling motion of a circular cylinder interacting dynamically with a point vortex},
     journal = {Russian journal of nonlinear dynamics},
     pages = {617--628},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2012_8_3_a13/}
}
TY  - JOUR
AU  - Sergey V. Sokolov
AU  - Sergey M. Ramodanov
TI  - Falling motion of a circular cylinder interacting dynamically with a point vortex
JO  - Russian journal of nonlinear dynamics
PY  - 2012
SP  - 617
EP  - 628
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2012_8_3_a13/
LA  - ru
ID  - ND_2012_8_3_a13
ER  - 
%0 Journal Article
%A Sergey V. Sokolov
%A Sergey M. Ramodanov
%T Falling motion of a circular cylinder interacting dynamically with a point vortex
%J Russian journal of nonlinear dynamics
%D 2012
%P 617-628
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2012_8_3_a13/
%G ru
%F ND_2012_8_3_a13
Sergey V. Sokolov; Sergey M. Ramodanov. Falling motion of a circular cylinder interacting dynamically with a point vortex. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 3, pp. 617-628. http://geodesic.mathdoc.fr/item/ND_2012_8_3_a13/