Rolling without spinning of a ball on a plane: absence of an invariant measure in a system with a complete set of first integrals
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 3, pp. 605-616.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we consider a system of a ball that rolls without slipping on a plane. The ball is assumed to be inhomogeneous and its center of mass does not necessarily coincide with its geometric center. We have proved that the governing equations can be recast into a system of six ODEs that admits four integrals of motion. Thus, the phase space of the system is foliated by invariant 2-tori; moreover, this foliation is equivalent to the Liouville foliation encountered in the case of Euler of the rigid body dynamics. However, the system cannot be solved in terms of quadratures because there is no invariant measure which we proved by finding limit cycles.
Keywords: non-holonomic constraint, invariant measure, integrability.
Mots-clés : Liouville foliation, invariant torus
@article{ND_2012_8_3_a12,
     author = {Alexey V. Bolsinov and Alexey V. Borisov and Ivan S. Mamaev},
     title = {Rolling without spinning of a ball on a plane: absence of an invariant measure in a system with a complete set of first integrals},
     journal = {Russian journal of nonlinear dynamics},
     pages = {605--616},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2012_8_3_a12/}
}
TY  - JOUR
AU  - Alexey V. Bolsinov
AU  - Alexey V. Borisov
AU  - Ivan S. Mamaev
TI  - Rolling without spinning of a ball on a plane: absence of an invariant measure in a system with a complete set of first integrals
JO  - Russian journal of nonlinear dynamics
PY  - 2012
SP  - 605
EP  - 616
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2012_8_3_a12/
LA  - ru
ID  - ND_2012_8_3_a12
ER  - 
%0 Journal Article
%A Alexey V. Bolsinov
%A Alexey V. Borisov
%A Ivan S. Mamaev
%T Rolling without spinning of a ball on a plane: absence of an invariant measure in a system with a complete set of first integrals
%J Russian journal of nonlinear dynamics
%D 2012
%P 605-616
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2012_8_3_a12/
%G ru
%F ND_2012_8_3_a12
Alexey V. Bolsinov; Alexey V. Borisov; Ivan S. Mamaev. Rolling without spinning of a ball on a plane: absence of an invariant measure in a system with a complete set of first integrals. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 3, pp. 605-616. http://geodesic.mathdoc.fr/item/ND_2012_8_3_a12/

[1] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Gamiltonizatsiya negolonomnykh sistem v okrestnosti invariantnykh mnogoobrazii”, Nelineinaya dinamika, 6:4 (2010), 829–854 ; Bolsinov A. V., Borisov A. V., Mamaev I. S., “Hamiltonization of nonholonomic systems in the neighborhood of invariant manifolds”, Regul. Chaotic Dyn., 16:5 (2011), 443–464 | DOI | MR

[2] Bolsinov A. V., Matveev V. S., Fomenko A. T., “Dvumernye rimanovy metriki s integriruemym geodezicheskim potokom: Lokalnaya i globalnaya geometriya”, Matem. sb., 189:10 (1998), 5–32 | DOI | MR | Zbl

[3] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy: Geometriya, topologiya, klassifikatsiya, V 2-kh tt., UdGU, Izhevsk, 1999, 444 pp. ; 448 с. | MR

[4] Borisov A. V., Kilin A. A., Mamaev I. S., “Kak upravlyat sharom Chaplygina pri pomoschi rotorov”, Nelineinaya dinamika, 8:2 (2012), 289–307 | MR

[5] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela, 2-e izd., Institut kompyuternykh issledovanii, M.–Izhevsk, 2005, 576 pp. | MR

[6] Borisov A. V., Mamaev I. S., “Izomorfizm i gamiltonovo predstavlenie nekotorykh negolonomnykh sistem”, Sib. matem. zhurn., 48:1 (2007), 33–45 | MR | Zbl

[7] Borisov A. V., Mamaev I. S., “Kachenie neodnorodnogo shara po sfere bez vercheniya i krucheniya”, Nelineinaya dinamika, 2:4 (2006), 445–452 ; Borisov A. V., Mamaev I. S., “Rolling of a non-homogeneous ball over a sphere without slipping and twisting”, Regul. Chaotic Dyn., 12:2 (2007), 153–159 | DOI | MR | Zbl

[8] Borisov A. V., Mamaev I. S., “Zakony sokhraneniya, ierarkhiya dinamiki i yavnoe integrirovanie negolonomnykh sistem”, Nelineinaya dinamika, 4:3 (2008), 223–280

[9] Borisov A. V., Mamaev I. S., Treschev D. V., “Kachenie tverdogo tela bez proskalzyvaniya i vercheniya: Kinematika i dinamika”, Nelineinaya dinamika, 8:4 (2012), 783–797

[10] Veselova L. E., “Novye sluchai integriruemosti uravnenii dvizheniya tverdogo tela pri nalichii negolonomnoi svyazi”, Geometriya, differentsialnye uravneniya i mekhanika, Sb. st., eds. V. V. Kozlov, A. T. Fomenko, MGU, M., 1986, 64–68 | MR

[11] Nguen Ten Zung, Polyakova L. S., Selivanova E. N., “Topologicheskaya klassifikatsiya integriruemykh geodezicheskikh potokov s dopolnitelnym kvadratichnym ili lineinym po impulsam integralom na dvumernykh orientiruemykh rimanovykh mnogoobraziyakh”, Funkts. analiz i ego pril., 27:3 (1993), 42–56 | MR

[12] Kharlamov M. P., Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, LGU, L., 1988, 200 pp. | MR

[13] Borisov A. V., Mamaev I. S., “The rolling motion of a rigid body on a plane and a sphere. Hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 177–200 | DOI | MR | Zbl

[14] Beghin H., “Sur les conditions d'application des équations de Lagrange à un système non holonome”, Bulletin de la S.M.F., 57 (1929), 118–124 | MR | Zbl

[15] Ehlers K. M., Koiller J., “Rubber rolling: Geometry and dynamics of 2–3–5 distributions”, Proceedings of the IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence (Moscow, 25–30 August, 2006), eds. A. V. Borisov et al., Springer, Dordrecht, 2008, 469–480 | DOI | MR

[16] Hadamard J., “Sur les mouvements de roulement”, Mémoires de la Société des sciences physiques et naturelles de Bordeaux, 4e sér., 1895, 397–417 | Zbl

[17] Koiller J., Ehlers K. M., “Rubber rolling over a sphere”, Regul. Chaotic Dyn., 12:2 (2007), 127–152 | DOI | MR | Zbl

[18] Lynch P., Bustamante M. D., “Precession and recession of the rock'n'roller”, J. Phys. A, 42 (2009), 425203, 25 | DOI | MR | Zbl

[19] Oshemkov A. A., “Fomenko invariants for the main integrable cases of the rigid body motion equations”, Topological classification of integrable systems, Adv. Soviet Math., 6, ed. A. T. Fomenko, AMS, Providence, RI, 1991, 67–146 | MR

[20] Walsh J. A., “The dynamics of circle homeomorphisms: A hands-on introduction”, Math. Mag., 72:1 (1999), 3–13 | MR | Zbl