On the Routh sphere
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 3, pp. 569-583.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss an embedding of the vector field associated with the nonholonomic Routh sphere in subgroup of the commuting Hamiltonian vector fields associated with this system. We prove that the corresponding Poisson brackets are reduced to canonical ones in the region without of homoclinic trajectories.
Keywords: nonholonomic mechanics, Routh sphere
Mots-clés : Poisson brackets.
@article{ND_2012_8_3_a10,
     author = {Ivan A. Bizyaev and Andrey V. Tsiganov},
     title = {On the {Routh} sphere},
     journal = {Russian journal of nonlinear dynamics},
     pages = {569--583},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2012_8_3_a10/}
}
TY  - JOUR
AU  - Ivan A. Bizyaev
AU  - Andrey V. Tsiganov
TI  - On the Routh sphere
JO  - Russian journal of nonlinear dynamics
PY  - 2012
SP  - 569
EP  - 583
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2012_8_3_a10/
LA  - ru
ID  - ND_2012_8_3_a10
ER  - 
%0 Journal Article
%A Ivan A. Bizyaev
%A Andrey V. Tsiganov
%T On the Routh sphere
%J Russian journal of nonlinear dynamics
%D 2012
%P 569-583
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2012_8_3_a10/
%G ru
%F ND_2012_8_3_a10
Ivan A. Bizyaev; Andrey V. Tsiganov. On the Routh sphere. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 3, pp. 569-583. http://geodesic.mathdoc.fr/item/ND_2012_8_3_a10/

[1] Abraham R., Marsden J. E., Foundations of mechanics, 2nd ed., AMS, Providence, R. I., 1978, 826 pp. | MR | Zbl

[2] Borisov A. V., Tsygvintsev A. V., “Pokazateli Kovalevskoi i integriruemye sistemy klassicheskoi dinamiki. 1; 2”, Regul. Chaotic Dyn., 1:1 (1996), 15–37 | MR

[3] Borisov A. V., Mamaev I. S., “Gamiltonovost zadachi Chaplygina o kachenii shara”, Matem. zametki, 70:5 (2001), 793–795 | DOI | MR | Zbl

[4] Borisov A. V., Mamaev I. S., “The rolling motion of a rigid body on a plane and a sphere: Hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 177–200 | DOI | MR | Zbl

[5] Borisov A. V., Mamaev I. S., Kilin A. A., “The rolling motion of a ball on a surface: New integrals and hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 201–219 | DOI | MR | Zbl

[6] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, Inst. kompyutern. issled., M.–Izhevsk, 2005, 576 pp. | MR

[7] Borisov A. V., Mamaev I. S., “Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems”, Regul. Chaotic Dyn., 13:5 (2008), 443–490 | DOI | MR | Zbl

[8] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Hamiltonization of nonholonomic systems in the neighborhood of invariant manifolds”, Regul. Chaotic Dyn., 16:5 (2011), 443–464 | DOI | MR

[9] Borisov A. V., Mamaev I. S., Kilin A. A., Izbrannye zadachi negolonomnoi mekhaniki, Preprint http://ics.org.ru/doc?book=30&dir=r

[10] Gerts G., Printsipy mekhaniki, izlozhennye v novoi svyazi, AN SSSR, M., 1959, 386 pp.

[11] Chaplygin S. A., “O dvizhenii tyazhelogo tela vrascheniya na gorizontalnoi ploskosti”: S. A. Chaplygin, Issledovaniya po dinamike negolonomnykh sistem, Gostekhizdat, M.–L., 1949, 9–27

[12] Cushman R., “Routh's sphere”, Rep. Math. Phys., 42:1–2 (1998), 47–70 | DOI | MR | Zbl

[13] Duistermaat J. J., “On global action-angle variables”, Comm. Pure Appl. Math., 33 (1986), 687–706 | DOI | MR

[14] Dzhellett Dzh., Traktat po teorii treniya, NITs «RKhD», M.–Izhevsk, 2009, 264 pp.

[15] Jost R., “Poisson brackets: An unpedagogical lecture”, Rev. Modern Phys., 36:2 (1964), 572–579 | DOI

[16] Kozlov V. V., “K teorii integrirovaniya uravnenii negolonomnoi mekhaniki”, Uspekhi mekhaniki, 8:3 (1985), 85–107 | MR

[17] Puankare A., “Idei Gertsa v mekhanike”: A. Puankare, Poslednie raboty A. Puankare, NITs «RKhD», Izhevsk, 2001, 52–56

[18] Ramos A., “Poisson structures for reduced non-holonomic systems”, J. Phys. A, 37 (2004), 4821–4842 | DOI | MR | Zbl

[19] Raus E. Dzh., Dinamika sistemy tverdykh tel, V 2-kh tt., v. 2, Nauka, M., 1983, 544 pp. | MR

[20] Tsiganov A. V., “On the two different bi-Hamiltonian structures for the Toda lattice”, J. Phys. A, 40 (2007), 6395–6406 | DOI | MR | Zbl

[21] Tsiganov A. V., “On maximally superintegrable systems”, Regul. Chaotic Dyn., 13:3 (2008), 178–190 | DOI | MR | Zbl

[22] Tsiganov A. V., “On bi-integrable natural Hamiltonian systems on Riemannian manifolds”, J. Nonlinear Math. Phys., 18:2 (2011), 245–268 | DOI | MR | Zbl

[23] Tsiganov A. V., “Integrable Euler top and nonholonomic Chaplygin ball”, J. Geom. Mech., 3:3 (2011), 337–362 | DOI | MR | Zbl

[24] Tsyganov A. V., “O puassonovykh strukturakh, voznikayuschikh pri rassmotrenii shara Chaplygina i ego obobschenii”, Nelineinaya dinamika, 8:2 (2012), 345–353

[25] Tsyganov A. V., “Ob odnom semeistve konformno gamiltonovykh sistem”, TMF, 2012 (to appear)