Universal two-dimensional map and its radiophysical realization
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 3, pp. 461-471.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a simple two-dimensional map, parameters of which are the trace and Jacobian of the perturbation matrix of the fixed point. On the parameters plane it demonstrates the main universal bifurcation scenarios: the threshold to chaos via period-doublings, the situation of quasiperiodic oscillations and Arnold tongues. We demonstrate the possibility of implementation of such map in radiophysical device.
Keywords: maps, phenomena of quasiperiodicity.
Mots-clés : bifurcations
@article{ND_2012_8_3_a1,
     author = {Alexander P. Kuznetsov and Sergey P. Kuznetsov and Mikhail V. Pozdnyakov and Julia V. Sedova},
     title = {Universal two-dimensional map and its radiophysical realization},
     journal = {Russian journal of nonlinear dynamics},
     pages = {461--471},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2012_8_3_a1/}
}
TY  - JOUR
AU  - Alexander P. Kuznetsov
AU  - Sergey P. Kuznetsov
AU  - Mikhail V. Pozdnyakov
AU  - Julia V. Sedova
TI  - Universal two-dimensional map and its radiophysical realization
JO  - Russian journal of nonlinear dynamics
PY  - 2012
SP  - 461
EP  - 471
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2012_8_3_a1/
LA  - ru
ID  - ND_2012_8_3_a1
ER  - 
%0 Journal Article
%A Alexander P. Kuznetsov
%A Sergey P. Kuznetsov
%A Mikhail V. Pozdnyakov
%A Julia V. Sedova
%T Universal two-dimensional map and its radiophysical realization
%J Russian journal of nonlinear dynamics
%D 2012
%P 461-471
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2012_8_3_a1/
%G ru
%F ND_2012_8_3_a1
Alexander P. Kuznetsov; Sergey P. Kuznetsov; Mikhail V. Pozdnyakov; Julia V. Sedova. Universal two-dimensional map and its radiophysical realization. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 3, pp. 461-471. http://geodesic.mathdoc.fr/item/ND_2012_8_3_a1/

[1] Neimark Yu. I., Landa P. S., Stokhasticheskie i khaoticheskie kolebaniya, Nauka, M., 1987, 424 pp. | MR

[2] Mun F., Khaoticheskie kolebaniya, Mir, M., 1990, 312 pp. | MR

[3] Anischenko V. S., Slozhnye kolebaniya v prostykh sistemakh: Mekhanizmy vozniknoveniya, struktura i svoistva dinamicheskogo khaosa v radiofizicheskikh sistemakh, Librokom, M., 2009, 320 pp.

[4] Kuznetsov S. P., Dinamicheskii khaos, Fizmatlit, M., 2006, 356 pp.

[5] Bazykin A. D., Nelineinaya dinamika vzaimodeistvuyuschikh populyatsii, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003, 368 pp.

[6] Kuznetsov Yu. A., Elements of applied bifurcation theory, Springer, New York, 1998, 614 pp. | MR

[7] Meijer H. G. E., Codimension $2$ bifurcations of iterated maps, PhD Thesis, Utrecht Univ., 2006 http://igitur-archive.library.uu.nl/dissertations/2006-1204-200716/index.htm

[8] Wiggins S., Introduction to applied nonlinear dynamical systems and chaos, Springer, New York, 2003, 843 pp. | MR | Zbl

[9] Gonchenko V. S., Kuznetsov Yu. A., Meijer H. G. E., “Generalized Hénon map and bifurcations of homoclinic tangencies”, SIAM J. Appl. Dyn. Syst., 4:32 (2005), 407–436 | DOI | MR | Zbl

[10] Gonchenko S. V., Stenkin O. V., Shilnikov L. P., “O suschestvovanii schetnogo mnozhestva ustoichivykh i neustoichivykh invariantykh torov u sistem iz oblastei Nyukhausa s geteroklinicheskimi kasaniyami”, Nelineinaya dinamika, 2:1 (2006), 3–25 | MR

[11] Gonchenko S. V., Gonchenko A. S., “K voprosu o klassifikatsii lineinykh i nelineinykh podkov Smeila”, Nelineinaya dinamika, 3:4 (2007), 423–443 | MR

[12] Kuznetsov Yu. A., Meijer H. G. E., van Veen L., “The fold-flip bifurcation”, Internat. J. Bifur. Chaos, 14:7 (2004), 2253–2282 | DOI | MR | Zbl

[13] Arrowsmith D. K., Cartwright J. H. E., Lansbury A. N., Place C. M., “The Bogdanov map: Bifurcations, mode locking, and chaos in a dissipative system”, Internat. J. Bifur. Chaos, 3:4 (1993), 803–842 | DOI | MR | Zbl

[14] Sukharevskii V. V., “Otsenka temperatury i plotnosti chastits v slabodissipativnoi teorii Kolmogorova–Arnolda–Mozera”, Vestn. Mosk. un-ta. Ser. 3. Fizika. Astronomiya, 2006, no. 2, 7–9

[15] Bogdanov R. I., Bogdanov M. R., “Slabodissipativnaya versiya teorii Kolmogorova–Arnolda–Mozera: Teoriya i praktika raschetov”, Zh. vychisl. matem. i matem. fiz., 48:3 (2008), 473–490 | MR | Zbl

[16] Makarenko V. V., “Modelirovanie radioelektronnykh ustroistv s pomoschyu programmy NI Multisim”, Elektronnye komponenty i sistemy (Kiev) VD MAIS, 2008, no. 1, 50–56 ; No 2, 51–57; No 3, 44–51; No 4, 44–51; No 6, 46–53; No 7, 54–59; No 8, 46–56; No 9, 65–69; No 12, 47–52 | MR

[17] Varzarev Yu. N., Ivantsov V. V, Spiridonov B. G., Modelirovanie elektronnykh skhem v sisteme Multisim, TTI YuFU, Taganrog, 2008, 81 pp.

[18] Thompson J. M. T., Stewart H. B., Nonlinear dynamics and chaos: Geometrical methods for engineers and scientists, Wiley/Blackwell, Chichester, 1986, 376 pp. | MR