Universal two-dimensional map and its radiophysical realization
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 3, pp. 461-471

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a simple two-dimensional map, parameters of which are the trace and Jacobian of the perturbation matrix of the fixed point. On the parameters plane it demonstrates the main universal bifurcation scenarios: the threshold to chaos via period-doublings, the situation of quasiperiodic oscillations and Arnold tongues. We demonstrate the possibility of implementation of such map in radiophysical device.
Keywords: maps, phenomena of quasiperiodicity.
Mots-clés : bifurcations
@article{ND_2012_8_3_a1,
     author = {Alexander P. Kuznetsov and Sergey P. Kuznetsov and Mikhail V. Pozdnyakov and Julia V. Sedova},
     title = {Universal two-dimensional map and its radiophysical realization},
     journal = {Russian journal of nonlinear dynamics},
     pages = {461--471},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2012_8_3_a1/}
}
TY  - JOUR
AU  - Alexander P. Kuznetsov
AU  - Sergey P. Kuznetsov
AU  - Mikhail V. Pozdnyakov
AU  - Julia V. Sedova
TI  - Universal two-dimensional map and its radiophysical realization
JO  - Russian journal of nonlinear dynamics
PY  - 2012
SP  - 461
EP  - 471
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2012_8_3_a1/
LA  - ru
ID  - ND_2012_8_3_a1
ER  - 
%0 Journal Article
%A Alexander P. Kuznetsov
%A Sergey P. Kuznetsov
%A Mikhail V. Pozdnyakov
%A Julia V. Sedova
%T Universal two-dimensional map and its radiophysical realization
%J Russian journal of nonlinear dynamics
%D 2012
%P 461-471
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2012_8_3_a1/
%G ru
%F ND_2012_8_3_a1
Alexander P. Kuznetsov; Sergey P. Kuznetsov; Mikhail V. Pozdnyakov; Julia V. Sedova. Universal two-dimensional map and its radiophysical realization. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 3, pp. 461-471. http://geodesic.mathdoc.fr/item/ND_2012_8_3_a1/