Poincar\'e recurrences time and local dimension of chaotic attractors
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 3, pp. 449-460.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of a local fractal dimension has been introduced in the framework of the average Poincaré recurrence time numerical analysis in an $\varepsilon$-vicinity of a certain point. Lozi and Hénon maps have been considered. It has been shown that in case of Lozi map the local dimension weakly depends on the point on the attractor and its value is close to the fractal dimension of the attractor. In case of a quasi attractor observed in both Hénon and Feugenbaum systems the local dimension significantly depends on both the diameter and the location of the $\varepsilon$-vicinity. The reason of this strong dependency is high non-homogenity of a quasi-attractor which is typical for non-hyperbolic chaotic attractors.
Keywords: Poincaré recurrence, attractor dimension.
@article{ND_2012_8_3_a0,
     author = {Vadim S. Anishchenko and Nadezhda I. Birukova and Sergey V. Astakhov and Yaroslav I. Boev},
     title = {Poincar\'e recurrences time and local dimension of chaotic attractors},
     journal = {Russian journal of nonlinear dynamics},
     pages = {449--460},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2012_8_3_a0/}
}
TY  - JOUR
AU  - Vadim S. Anishchenko
AU  - Nadezhda I. Birukova
AU  - Sergey V. Astakhov
AU  - Yaroslav I. Boev
TI  - Poincar\'e recurrences time and local dimension of chaotic attractors
JO  - Russian journal of nonlinear dynamics
PY  - 2012
SP  - 449
EP  - 460
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2012_8_3_a0/
LA  - ru
ID  - ND_2012_8_3_a0
ER  - 
%0 Journal Article
%A Vadim S. Anishchenko
%A Nadezhda I. Birukova
%A Sergey V. Astakhov
%A Yaroslav I. Boev
%T Poincar\'e recurrences time and local dimension of chaotic attractors
%J Russian journal of nonlinear dynamics
%D 2012
%P 449-460
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2012_8_3_a0/
%G ru
%F ND_2012_8_3_a0
Vadim S. Anishchenko; Nadezhda I. Birukova; Sergey V. Astakhov; Yaroslav I. Boev. Poincar\'e recurrences time and local dimension of chaotic attractors. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 3, pp. 449-460. http://geodesic.mathdoc.fr/item/ND_2012_8_3_a0/

[1] Kats M., Veroyatnost i smezhnye voprosy v fizike, Mir, M., 1965, 407 pp. | Zbl

[2] Afraimovich V., Ugalde E., Urias J., Fractal dimension of Poincaré recurrences, Monogr. Ser. on Nonlinear Sci. and Complexity, 2, Elsevier, Amsterdam, 2006, 258 pp. ; Afraimovich V., Ugalde E., Urias Kh., Fraktalnye razmernosti dlya vremen vozvrascheniya Puankare, NITs «Regulyarnaya i khaoticheskaya dinamika». Inst. kompyutern. issled., M.–Izhevsk, 2011, 292 pp. | MR | Zbl

[3] Anischenko V. S., Khairulin M. E., “Vliyanie indutsirovannogo shumom krizisa attraktorov na kharakteristiki vremen vozvrata Puankare”, Pisma v ZhTF, 37 (2011), 25–43

[4] Anishchenko V. S., Khairulin M., Strelkova G., Kurths J., “Statistical characteristics of the Poincaré return times for a one-dimensional nonhyperbolic map”, Eur. Phys. J. B Condens. Matter Phys., 82 (2011), 219–225 | MR

[5] Afraimovich V. S., Lin W.-W., Rulkov N. F., “Fractal dimension for Poincaré recurrences as an indicator of synchronized chaotic regimes”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10:10 (2000), 2323–2337 | DOI | MR | Zbl

[6] Ott E., Grebogi C., Yorke J., “Controlling chaos”, Phys. Rev. Lett., 64:11 (1990), 1196–1199 | DOI | MR | Zbl

[7] Gao J. B., “Recurrence time statistics for chaotic systems and their applications”, Phys. Rev. Lett., 83:16 (1999), 3178—3181 | DOI

[8] Shuster G., Determinirovannyi khaos: Vvedenie, Mir, M., 1988, 253 pp. | MR | Zbl

[9] Lozi R., “Un attracteur étrange du type attracteur de Hénon”, J. de Physique C5, 39:8, Suppl. (1978), 9–10

[10] Ledrappier F., “Some relations between dimension and Lyapounov exponents”, Comm. Math. Phys., 81:2 (1981), 229–238 | DOI | MR | Zbl

[11] Anischenko V. S., Slozhnye kolebaniya v prostykh sistemakh, Nauka, M., 1990, 312 pp. | MR

[12] Hénon M., “A two-dimensional mapping with a strange attractor”, Comm. Math. Phys., 50:1 (1976), 69–77 | DOI | MR

[13] Anischenko V. S., Safonova M. A., “Sravnitelnyi analiz razmernostei khaoticheskogo attraktora”, Pisma v ZhTF, 15:12 (1989), 41–45 | MR

[14] Anischenko V. S., Astakhov S. V., Boev Ya. I., Kurts Yu., “Vozvraty Puankare v sisteme s khaoticheskim nestrannym attraktorom”, Nelineinaya dinamika, 8:1 (2012), 29–41

[15] Poincaré H., “Sur le problème des trois corps et les équations de la dynamique”, Acta Math., 13 (1889), 1–270