The stability criterion of a regular vortex pentagon outside a circle
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 2, pp. 355-368.

Voir la notice de l'article provenant de la source Math-Net.Ru

The nonlinear stability analysis of a stationary rotation of a system of five identical point vortices lying uniform on a circle of radius $R_0$ outside a circular domain of radius $R$ is performed. The problem is reduced to the problem of equilibrium of Hamiltonian system with cyclic variable. The stability of stationary motion is interpreted as Routh stability. The conditions of stability, formal stability and instability are obtained subject to the parameter $q=R^2/R_0^2$.
Keywords: point vortices, stationary rotation, stability, resonance.
@article{ND_2012_8_2_a9,
     author = {L. G. Kurakin and I. V. Ostrovskaya},
     title = {The stability criterion of a regular vortex pentagon outside a circle},
     journal = {Russian journal of nonlinear dynamics},
     pages = {355--368},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2012_8_2_a9/}
}
TY  - JOUR
AU  - L. G. Kurakin
AU  - I. V. Ostrovskaya
TI  - The stability criterion of a regular vortex pentagon outside a circle
JO  - Russian journal of nonlinear dynamics
PY  - 2012
SP  - 355
EP  - 368
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2012_8_2_a9/
LA  - ru
ID  - ND_2012_8_2_a9
ER  - 
%0 Journal Article
%A L. G. Kurakin
%A I. V. Ostrovskaya
%T The stability criterion of a regular vortex pentagon outside a circle
%J Russian journal of nonlinear dynamics
%D 2012
%P 355-368
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2012_8_2_a9/
%G ru
%F ND_2012_8_2_a9
L. G. Kurakin; I. V. Ostrovskaya. The stability criterion of a regular vortex pentagon outside a circle. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 2, pp. 355-368. http://geodesic.mathdoc.fr/item/ND_2012_8_2_a9/

[1] Havelock T. H., “The stability of motion of rectilinear vortices in ring formation”, Philos. Mag., 11:70 (1931), 617–633

[2] Kurakin L. G., “Ob ustoichivosti pravilnogo vikhrevogo $n$-ugolnika”, Dokl. RAN, 335:6 (1994), 729–731 | MR | Zbl

[3] Kurakin L. G., Yudovich V. I., “O nelineinoi ustoichivosti statsionarnogo vrascheniya pravilnogo vikhrevogo mnogougolnika”, Dokl. RAN, 384:4 (2002), 476–482 | MR

[4] Kurakin L. G., Yudovich V. I., “The stability of stationary rotation of a regular vortex polygon”, Chaos, 12 (2002), 574–595 | DOI | MR | Zbl

[5] Kurakin L. G., “Ustoichivost, rezonansy i neustoichivost pravilnykh vikhrevykh mnogougolnikov vnutri krugovoi oblasti”, Dokl. RAN, 399:1 (2004), 52–55

[6] Kurakin L. G., “On stability of a regular vortex polygon in the circular domain”, J. Math. Fluid Mech., 7, suppl. 3 (2005), S376–S386 | DOI | MR | Zbl

[7] Kurakin L. G., “Ob ustoichivosti tomsonovskikh vikhrevykh konfiguratsii vnutri krugovoi oblasti”, Nelineinaya dinamika, 5:3 (2009), 295–317 | MR

[8] Kurakin L. G., “On the stability of Thomson's vortex configurations inside a circular domain”, Regul. Chaotic Dyn., 15:1 (2010), 40–58 | DOI | MR | Zbl

[9] Kurakin L. G., “Ob ustoichivosti tomsonovskogo vikhrevogo pyatiugolnika vnutri kruga”, Nelineinaya dinamika, 7:3 (2011), 465–488 | MR

[10] Kurakin L. G., Ostrovskaya I. V., “Ob ustoichivosti tomsonovskogo vikhrevogo mnogougolnika s chetnym chislom vikhrei vne krugovoi oblasti”, Sib. matem. zhurn., 51:3 (2010), 584–598 | MR | Zbl

[11] Kurakin L. G., “Ob ustoichivosti statsionarnogo vrascheniya sistemy trekh ravnoudalennykh vikhrei vne kruga”, PMM, 75:2 (2011), 327–337 | MR

[12] Markeev A. P., Tochki libratsii v nebesnoi mekhanike i kosmodinamike, Nauka, M., 1978, 312 pp.

[13] Kunitsyn A. N., Markeev A. P., “Ustoichivost v rezonansnykh sluchayakh”, Itogi nauki i tekhniki. Ser. Obschaya mekhanika, 4, VINITI, M., 1979, 58–139 | MR

[14] Milne-Thomson L. M., Theoretical hydrodynamics, 5th ed., Macmillan, New York, 1968, 768 pp. ; Miln-Tomson L. M., Teoreticheskaya gidrodinamika, Mir, M., 1964, 660 pp. | Zbl

[15] Routh E. J., A treatise on the stability of a given state motion, Macmillan, London, 1877, 108 pp.

[16] Bryuno A. D., “O formalnoi ustoichivosti sistemy Gamiltona”, Matem. zametki, 1:3 (1967), 325–330 | MR | Zbl

[17] Sokolskii A. G., Issledovanie ustoichivosti dvizheniya v nekotorykh zadachakh nebesnoi dinamiki, Avtoref. diss.... kand. fiz.-mat. nauk, Mosk. fiz.-tekhn. in-t, 1976

[18] Sokolskii A. G., “Ob ustoichivosti lagranzhevykh reshenii ogranichennoi zadachi trekh tel pri kriticheskom otnoshenii mass”, PMM, 39:2 (1975), 366–369

[19] Markeev A. P., “Ob ustoichivosti kanonicheskoi sistemy s dvumya stepenyami svobody pri nalichii rezonansa”, PMM, 32:4 (1968), 738–744 | MR | Zbl

[20] Markeev A. P., O metode tochechnykh otobrazhenii i nekotorykh ego prilozheniyakh v zadache trekh tel, Preprint No 49, Inct. prikl. matem. AN SSSR, M., 1973

[21] Sokolskii A. G., “Ob ustoichivosti avtonomnoi gamiltonovoi sistemy s dvumya stepenyami svobody pri rezonanse pervogo poryadka”, PMM, 41:1 (1977), 24–33 | MR

[22] Sokolskii A. G., “Ob ustoichivosti avtonomnoi gamiltonovoi sistemy s dvumya stepenyami svobody v sluchae ravnykh chastot”, PMM, 38:5 (1974), 791–799 | MR