The stability criterion of a regular vortex pentagon outside a circle
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 2, pp. 355-368

Voir la notice de l'article provenant de la source Math-Net.Ru

The nonlinear stability analysis of a stationary rotation of a system of five identical point vortices lying uniform on a circle of radius $R_0$ outside a circular domain of radius $R$ is performed. The problem is reduced to the problem of equilibrium of Hamiltonian system with cyclic variable. The stability of stationary motion is interpreted as Routh stability. The conditions of stability, formal stability and instability are obtained subject to the parameter $q=R^2/R_0^2$.
Keywords: point vortices, stationary rotation, stability, resonance.
@article{ND_2012_8_2_a9,
     author = {L. G. Kurakin and I. V. Ostrovskaya},
     title = {The stability criterion of a regular vortex pentagon outside a circle},
     journal = {Russian journal of nonlinear dynamics},
     pages = {355--368},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2012_8_2_a9/}
}
TY  - JOUR
AU  - L. G. Kurakin
AU  - I. V. Ostrovskaya
TI  - The stability criterion of a regular vortex pentagon outside a circle
JO  - Russian journal of nonlinear dynamics
PY  - 2012
SP  - 355
EP  - 368
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2012_8_2_a9/
LA  - ru
ID  - ND_2012_8_2_a9
ER  - 
%0 Journal Article
%A L. G. Kurakin
%A I. V. Ostrovskaya
%T The stability criterion of a regular vortex pentagon outside a circle
%J Russian journal of nonlinear dynamics
%D 2012
%P 355-368
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2012_8_2_a9/
%G ru
%F ND_2012_8_2_a9
L. G. Kurakin; I. V. Ostrovskaya. The stability criterion of a regular vortex pentagon outside a circle. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 2, pp. 355-368. http://geodesic.mathdoc.fr/item/ND_2012_8_2_a9/