On symmetry breaking bifurcations in reversible systems
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 2, pp. 323-343
Voir la notice de l'article provenant de la source Math-Net.Ru
We review results on local bifurcations in reversible systems (flows and diffeomorphisms) which lead to the creation of pairs attractor–repellor at bifurcations from symmetric equilibria (for flows) and fixed points (for diffeomorphisms). We consider bifurcations of co-dimension 1 in systems of small dimensions (2,3, and 4).
Keywords:
reversible system, reversible diffeomorphism, symmetric equilibrium, symmetric fixed point, loss of symmetry.
Mots-clés : bifurcation
Mots-clés : bifurcation
@article{ND_2012_8_2_a7,
author = {L. M. Lerman and D. V. Turaev},
title = {On symmetry breaking bifurcations in reversible systems},
journal = {Russian journal of nonlinear dynamics},
pages = {323--343},
publisher = {mathdoc},
volume = {8},
number = {2},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ND_2012_8_2_a7/}
}
L. M. Lerman; D. V. Turaev. On symmetry breaking bifurcations in reversible systems. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 2, pp. 323-343. http://geodesic.mathdoc.fr/item/ND_2012_8_2_a7/