Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2012_8_2_a7, author = {L. M. Lerman and D. V. Turaev}, title = {On symmetry breaking bifurcations in reversible systems}, journal = {Russian journal of nonlinear dynamics}, pages = {323--343}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2012_8_2_a7/} }
L. M. Lerman; D. V. Turaev. On symmetry breaking bifurcations in reversible systems. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 2, pp. 323-343. http://geodesic.mathdoc.fr/item/ND_2012_8_2_a7/
[1] Borisov A. V., Mamaev I. S., “Strannye attraktory v dinamike keltskikh kamnei”, Negolonomnye dinamicheskie sistemy: Integriruemost, khaos, strannye attraktory, Sb. st., eds. A. V. Borisov, I. S. Mamaev, Inst. kompyutern. issled., M.–Izhevsk, 2002, 296–326 | MR
[2] Bochner S., Montgomery D., “Locally compact groups of differentiable transformations”, Ann. of Math. (2), 47:4 (1946), 639–653 | DOI | MR | Zbl
[3] Bibikov Yu. N., Local theory of nonlinear analytic ordinary differential equations, Lecture Notes in Math., 702, Springer, Berlin–Heidelberg, 1979, 147 pp. | MR | Zbl
[4] Broer H. W., “Quasiperiodic flow near a codimension one singularity of a divergence free vector field in dimension three”, Dynamical systems and turbulence (Warwick, 1980), Lecture Notes in Math., 898, Springer, Berlin–New York, 1981, 75–89 | DOI | MR
[5] Broer H. W., Huitema G. B., Sevryuk M. B., Quasi-periodic motions in families of dynamical systems: Order amidst chaos, Lecture Notes in Math., 1645, Springer, Berlin, 1996, 196 pp. | MR
[6] Delshams A., Gonchenko S. V., Gonchenko V. S., Lázaro J. T., Sten'kin O., Abundance of attracting, repelling and elliptic periodic orbits in two-dimensional reversible maps, [math.DS], 25 Jan 2012, arXiv: 1201.5357
[7] Devaney R. L., “Reversible diffeomorphisms and flows”, Trans. Amer. Math. Soc., 218 (1976), 89–113 | DOI | MR | Zbl
[8] Fiedler B., Liebscher S., Alexander J. C., “Generic Hopf bifurcation from lines of equilibria without parameters: 1. Theory”, J. Differential Equations, 167:1 (2000), 16–35 | DOI | MR | Zbl
[9] Gavrilov N. K., “O nekotorykh bifurkatsiyakh sostoyaniya ravnovesiya s odnim nulevym i paroi chisto mnimykh kornei”, Metody kachestvennoi teorii differentsialnykh uravnenii, Mezhvuz. temat. sb. nauchn. trudov, ed. E. A. Leontovich-Andronova, GGU, Gorkii, 1978, 33–40
[10] Gavrilov N. K., Mezhvuz. temat. sb. nauchn. trudov, Metody kachestvennoi teorii differentsialnykh uravnenii, ed. E. A. Leontovich-Andronova, Gorkii, GGU, 1985
[11] Fenichel N., “Persistence and smoothness of invariant manifolds for flows”, Indiana Univ. Math. J., 21:3 (1971), 193–226 | DOI | MR | Zbl
[12] Glebsky L. Yu., Lerman L. M., “On the small stationary self-localized solutions for generalized $1$D Swift–Hohenberg equation”, Chaos, 5:3 (1995), 424–431 | DOI | MR | Zbl
[13] Gonchenko S. V., Lamb J., Rios I., Turaev D. V., Attractors and repellers near generic reversible elliptic points, Preprint
[14] Gonchenko A. S., Gonchenko S. V., Kazakov A. O., “Novye rezultaty o khaoticheskoi dinamike «keltskogo kamnya»”, Nelineinaya dinamika (to appear)
[15] Holmes Ph., Guckenheimer J., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Appl. Math. Sci., 42, 2nd ed., Springer, New York, 1983, 480 pp. ; Gukenkheimer Dzh., Kholms P., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, Inst. kompyutern. issled., M.–Izhevsk, 2002, 560 pp. | MR | Zbl
[16] Haragus M., Iooss G., Local bifurcations, center manifolds, and normal forms in infinite-dimensional dynamical systems, Universitext, Springer, London; EDP Sciences, Les Ulis, 2011, 329 pp. | MR | Zbl
[17] Iooss G., Pérouème M.-C., “Perturbed homoclinic solutions in reversible $1 : 1$ resonance vector fields”, J. Differential Equations, 102:1 (1993), 62–88 | DOI | MR | Zbl
[18] Kuznetsov Yu. A., Elements of applied bifurcation theory, Appl. Math. Sci., 112, 3rd ed., Springer, New York, 2004, 631 pp. | MR | Zbl
[19] Lamb J. S. W., Roberts J. A. G., “Time-reversal symmetry in dynamical systems: A survey”, Phys. D, 112:1-2 (1998), 1–39 | DOI | MR | Zbl
[20] Lamb J. S. W., Capel H. W., “Local bifurcations on the plane with reversing point group symmetry”, Chaos Solitons Fractals, 5:2 (1995), 271–293 | DOI | MR | Zbl
[21] Lamb J.S.W., Stenkin O. V., “Newhouse regions for reversible systems with infinitely many stable, unstable and elliptic periodic orbits”, Nonlinearity, 17:4 (2004), 1217–1244 | DOI | MR | Zbl
[22] Lerman L., “Breaking hyperbolicity for smooth symplectic toral diffeomorphisms”, Regul. Chaotic Dyn., 16:2-3 (2010), 196–211 | MR
[23] Lerman L., “Isoenergetical structure of integrable Hamiltonian systems in extended neighborhoods of simple singular points: Three degrees of freedom”, Methods of qualitative theory of differential equations and related topics: Supplement, Amer. Math. Soc. Transl. Ser. 2, 200, eds. L. Lerman, G. Polotovsky, L. Shilnikov, AMS, Providence, RI, 2000, 219–242 | MR
[24] Pérouème M.-C., “Bifurcation from a periodic orbit for a strongly resonant reversible autonomous vector field”, SIAM J. Math. Anal., 24:6 (1993), 1577–1596 | DOI | MR
[25] Sevryuk M. B., Reversible systems, Lecture Notes in Math., 1211, Springer, Berlin, 1986, 319 pp. | MR | Zbl
[26] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, V 2-kh tt., «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2003, 442 pp.; 2010, 548 pp.
[27] Shilnikov L. P., “Ob odnom novom tipe bifurkatsii mnogomernykh dinamicheskikh sistem”, Dokl. AN SSSR, 182:1 (1969), 53–56
[28] Shilnikov A., Nicolis G., Nicolis S., “Bifurcation and predictability analysis of a low-dimensional atmospheric circulation model”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5:6 (1995), 1701–1711 | DOI | MR
[29] Takens F., “Forced oscillations and bifurcations”, Applications of global analysis (Utrecht, 1973), v. 1, Comm. Math. Inst. Rijksuniv. Utrecht, 3, Utrecht, Math. Inst. Rijksuniv. Utrecht, 1974, 1–59 ; Global analysis of dynamical systems, ред. H. W. Broer, B. Krauskopf, G. Vegter, Bristol, IOP Publ., 2001, 2–61 | MR | MR
[30] Teixeira M. A., “Singularities of reversible vector fields”, Phys. D, 100:1-2 (1997), 101–118 | DOI | MR | Zbl
[31] Tkhai V. N., “Obratimye mekhanicheskie sistemy”, Nelineinaya mekhanika, eds. V. M. Matrosov, V. V. Rumyantsev, A. V. Karapetyan, Fizmatlit, M., 2001, 131–146
[32] Vanderbauwhede A., Fiedler B., “Homoclinic period blow-up in reversible and conservative system”, Z. Angew. Math. Phys., 43:2 (1992), 291–318 | DOI | MR
[33] Wang L.-J., “Homoclinic and heteroclinic orbits for the $0^2$ or $0^2i\omega$ singularity in the presence of two reversibility symmetries”, Quart. Appl. Math., 67:1 (2009), 1–38 | MR | Zbl