On coplanar equilibria of a space station on the cable fixed in an asteroid
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 2, pp. 309-322.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a space station equilibria on the cable called “the leier” with ends placed in poles of a dynamically-symmetric asteroid. We suggest some criteria of these equilibria stability for the station fixed on the leier. Using condition for V. V. Beletsky’s Generalized Restricted Circular Problem of Three Bodies we classify coplanar equilibria, i.e. equilibria in the plane composed by axes of dynamical symmetry and precession if the asteroid gravitational field is close to gravitational field of two particles of equal masses.
Keywords: space elevator, space tether system, asteroid, unilateral constraint, problem of three bodies.
@article{ND_2012_8_2_a6,
     author = {A. V. Rodnikov},
     title = {On coplanar equilibria of a space station on the cable fixed in an asteroid},
     journal = {Russian journal of nonlinear dynamics},
     pages = {309--322},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2012_8_2_a6/}
}
TY  - JOUR
AU  - A. V. Rodnikov
TI  - On coplanar equilibria of a space station on the cable fixed in an asteroid
JO  - Russian journal of nonlinear dynamics
PY  - 2012
SP  - 309
EP  - 322
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2012_8_2_a6/
LA  - ru
ID  - ND_2012_8_2_a6
ER  - 
%0 Journal Article
%A A. V. Rodnikov
%T On coplanar equilibria of a space station on the cable fixed in an asteroid
%J Russian journal of nonlinear dynamics
%D 2012
%P 309-322
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2012_8_2_a6/
%G ru
%F ND_2012_8_2_a6
A. V. Rodnikov. On coplanar equilibria of a space station on the cable fixed in an asteroid. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 2, pp. 309-322. http://geodesic.mathdoc.fr/item/ND_2012_8_2_a6/

[1] Szebehely V., Theory of orbits: The restricted problem of three bodies, Academic Press, New York, 1967, 312 pp. ; Sebekhei V., Teoriya orbit: Ogranichennaya zadacha trekh tel, Nauka, M., 1982, 656 pp. | Zbl

[2] Markeev A. P., Tochki libratsii v nebesnoi mekhanike i kosmodinamike, Nauka, M., 1978, 312 pp.

[3] Kosenko I. I., “Tochki libratsii v zadache o trekhosnom gravitiruyuschem ellipsoide: Geometriya oblasti ustoichivosti”, Kosmicheskie issledovaniya, 19:2 (1981), 200–209

[4] Ivanov A. P., “Ob ustoichivosti v sistemakh s neuderzhivayuschimi svyazyami”, PMM, 48:5 (1984), 725–732 | MR

[5] Ivanov A. P., Dinamika sistem s mekhanicheskimi soudareniyami, Mezhdunarodnaya programma obrazovaniya, M., 1997, 336 pp. | MR

[6] Scheeres D. J., “Stability of binary asteroids”, Icarus, 159:2 (2002), 271–283 | DOI

[7] Rodnikov A. V., “O dvizhenii gruza po trosu, zakreplennomu na gantelevidnom kosmicheskom apparate”, Kosmicheskie issledovaniya, 42:4 (2004), 444–448

[8] Koon W. S., Marsden J. E., Ross S., Lo M., Scheeres D. J., “Geometric mechanics and the dynamics of asteroid pairs”, Ann. New York Acad. Sci., 1017:1 (2004), 11–38 | DOI

[9] Scheeres D. J., Bellerose J., “The restricted Hill full $4$-body problem: Application to spacecraft motion about binary asteroids”, Dyn. Syst., 20 (2005), 23–44 | DOI | MR | Zbl

[10] Gabern F., Koon W. S., Marsden J. E., “Spacecraft dynamics near a binary asteroid”, Discrete Contin. Dyn. Syst., 2005, suppl., 297–306 | MR | Zbl

[11] Rodnikov A. V., “O polozheniyakh ravnovesiya gruza na trose, zakreplennom na gantelevidnoi kosmicheskoi stantsii, dvizhuscheisya po krugovoi geotsentricheskoi orbite”, Kosmicheskie issledovaniya, 44:1 (2006), 62–72

[12] Kosenko I. I., Stepanov S. Ya., “Ustoichivost polozhenii otnositelnogo ravnovesiya orbitalnoi svyazki s uchetom udarnykh vzaimodeistvii: Neogranichennaya zadacha”, MTT, 2006, no. 4, 86–96

[13] Rodnikov A. V., “O suschestvovanii bezudarnykh dvizhenii po leernoi svyazi, zakreplennoi na protyazhennom kosmicheskom apparate”, Kosmicheskie issledovaniya, 44:6 (2006), 553–560

[14] Rodnikov A. V., “The algorithms for capture of the space garbage using «leier constraint»”, Regul. Chaotic Dyn., 11:4 (2006), 483–489 | DOI | MR | Zbl

[15] Gabern F., Koon W. S., Marsden J. E., “Parking a spacecraft near an asteroid pair”, J. Guid. Control Dyn., 29:3 (2006), 544–553 | DOI

[16] Beletskii V. V., “Obobschennaya ogranichennaya krugovaya zadacha trekh tel kak model dinamiki dvoinykh asteroidov”, Kosmicheskie issledovaniya, 45:6 (2007), 435–442

[17] Beletskii V. V., Rodnikov A. V., “Ob ustoichivosti treugolnykh tochek libratsii v obobschennoi ogranichennoi krugovoi zadache trekh tel”, Kosmicheskie issledovaniya, 46:1 (2008), 42–50 | MR

[18] Beletsky V. V., Rodnikov A. V., “On evolution of libration points similar to Eulerian in the model problem of the binary-asteroids dynamics”, Journal of Vibroengineering, 10:4 (2008), 550–556

[19] Rodnikov A. V., “Rotations of a dumbbell equipped with the «leier constraint»”, Journal of Vibroengineering, 10:4 (2008), 557–561

[20] Buchin V., Burov A., Troger H., A dumb-bell satellite with a cabin. Existence and stability of relative equilibria, Proc. of 6th European Nonlinear Dynamics Conference (ENOC 2008) http://lib.physcon.ru/

[21] Fahnestock E. G., Scheeres D. J., “Binary asteroid orbit expansion due to continued YORP spin-up of the primary and primary surface particle motion”, Icarus, 201:1 (2009), 135–152 | DOI

[22] Rodnikov A. V., “O vliyanii leernoi svyazi na dvizhenie gantelevidnogo tela v tsentralnom nyutonovskom silovom pole”, Nelineinaya dinamika, 5:4 (2009), 519–533

[23] Burov A., Kosenko I., “On planar oscillations of a body with a variable mass distribution in an elliptic orbit”, J. Mech. Eng. Sci., 225:10 (2011), 2288–2295 | DOI

[24] Rodnikov A. V., “O dvizhenii materialnoi tochki vdol leera, zakreplennogo na pretsessiruyuschem tverdom tele”, Nelineinaya dinamika, 7:2 (2011), 295–311

[25] Beletskii V. V., Rodnikov A. V., “Komplanarnye tochki libratsii v obobschennoi ogranichennoi krugovoi zadache trekh tel”, Nelineinaya dinamika, 7:3 (2011), 569–576