Motions of a two-degree-of-freedom Hamiltonian system in the presence of multiple third-order resonances
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 2, pp. 267-288.

Voir la notice de l'article provenant de la source Math-Net.Ru

Motions of a time-periodic, two-degree-of-freedom Hamiltonian system in a neighborhood of a linearly stable equilibrium are considered. It is assumed that there are several resonant thirdorder relations between the frequencies of linear oscillations of the system. It is shown that in the presence of two third-order resonances the equilibrium is unstable at any ratio between resonant coefficients. Approximate (model) Hamiltonians are obtained which are characteristic of the resonant cases under consideration. A detailed analysis is made of nonlinear oscillations of systems corresponding to them.
Keywords: Hamiltonian system, multiple resonance, stability
Mots-clés : Chetaev function.
@article{ND_2012_8_2_a4,
     author = {O. V. Kholostova},
     title = {Motions of a two-degree-of-freedom {Hamiltonian} system in the presence of multiple third-order resonances},
     journal = {Russian journal of nonlinear dynamics},
     pages = {267--288},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2012_8_2_a4/}
}
TY  - JOUR
AU  - O. V. Kholostova
TI  - Motions of a two-degree-of-freedom Hamiltonian system in the presence of multiple third-order resonances
JO  - Russian journal of nonlinear dynamics
PY  - 2012
SP  - 267
EP  - 288
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2012_8_2_a4/
LA  - ru
ID  - ND_2012_8_2_a4
ER  - 
%0 Journal Article
%A O. V. Kholostova
%T Motions of a two-degree-of-freedom Hamiltonian system in the presence of multiple third-order resonances
%J Russian journal of nonlinear dynamics
%D 2012
%P 267-288
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2012_8_2_a4/
%G ru
%F ND_2012_8_2_a4
O. V. Kholostova. Motions of a two-degree-of-freedom Hamiltonian system in the presence of multiple third-order resonances. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 2, pp. 267-288. http://geodesic.mathdoc.fr/item/ND_2012_8_2_a4/

[1] Korteweg D. J., “Sur certaines vibrations d'ordre supérieur et d'intensité anomale”, Arch. Néerl. Sci. Exactes et Natur., ser. 2, 1 (1898), 229–260 | Zbl

[2] Beth H. I. E., “Les oscillations autour d'une position dans le cas d'existence d'une relation linéaire simple entre les nombres vibratoires”, Arch. Néerl. Sci. Exactes et Natur., ser. 2, 15 (1910), 246–283 | Zbl

[3] Beth H. I. E., “Les oscillations autour d'une position dans le cas d'existence d'une relation linéaire simple entre les nombres vibratoires”, suite, Arch. Néerl. Sci. Exactes et Natur., ser. 3A, 1 (1912), 185–213

[4] Kunitsyn A. L., Markeev A. P., “Ustoichivost v rezonansnykh sluchayakh”, Itogi nauki i tekhniki. Ser. Obschaya mekhanika, 4, VINITI, M., 1979, 58–139 | MR

[5] Markeev A. P., “Ustoichivost gamiltonovykh sistem”, Nelineinaya mekhanika, eds. V. M. Matrosov, V. V. Rumyantsev, A. V. Karapetyan, Fizmatgiz, M., 2001, 114–130

[6] Kunitsyn A. L., “Ob ustoichivosti v kriticheskom sluchae chisto mnimykh kornei pri vnutrennem rezonanse”, Differentsialnye uravneniya, 7:9 (1971), 1704–1706

[7] Khazina G. G., “Nekotorye voprosy ustoichivosti pri nalichii rezonansov”, PMM, 38:1 (1974), 56–65 | MR | Zbl

[8] Kunitsyn A. L., Medvedev S. V., “Ob ustoichivosti pri nalichii neskolkikh rezonansov”, PMM, 41:3 (1977), 422–429 | MR

[9] Kunitsyn A. L., Tashimov L. T., Nekotorye zadachi ustoichivosti nelineinykh rezonansnykh sistem, Gylym, Alma-Ata, 1990, 196 pp. | MR | Zbl

[10] Khazin L. G., Ob ustoichivosti polozheniya ravnovesiya gamiltonovykh sistem differentsialnykh uravnenii: (Vzaimodeistvie rezonansov tretego poryadka), Preprint No. 133, Inct. prikl. matem. AN SSSR, M., 1981, 20 pp. | MR

[11] Khazin L. G., “Vzaimodeistvie rezonansov tretego poryadka v zadachakh ustoichivosti gamiltonovykh sistem”, PMM, 48:3 (1984), 494–498 | MR | Zbl

[12] Markeev A. P., “O kratnom rezonanse v lineinykh sistemakh Gamiltona”, Dokl. RAN, 402:3 (2005), 339–343

[13] Markeev A. P., “O kratnom parametricheskom rezonanse v sistemakh Gamiltona”, PMM, 70:2 (2006), 200–220 | MR | Zbl

[14] Markeev A. P., Lineinye gamiltonovy sistemy i nekotorye zadachi ob ustoichivosti dvizheniya sputnika otnositelno tsentra mass, NITs «Regulyarnaya i khaoticheskaya dinamika», Institut kompyuternykh issledovanii, M.–Izhevsk, 2009, 396 pp.

[15] Markeev A. P., “Ob odnom osobom sluchae parametricheskogo rezonansa v zadachakh nebesnoi mekhaniki”, Pisma v Astronomicheskii zhurnal, 31:5 (2005), 388–394 | MR

[16] Markeev A. P., “Kratnyi rezonans v odnoi zadache ob ustoichivosti dvizheniya sputnika otnositelno tsentra mass”, Pisma v Astronomicheskii zhurnal, 31:9, 701–708

[17] Markeev A. P., Tochki libratsii v nebesnoi mekhanike i kosmodinamike, Nauka, M., 1978, 312 pp.

[18] Yakubovich V. A., Starzhinskii V. M., Parametricheskii rezonans v lineinykh sistemakh, Nauka, M., 1987, 328 pp. | MR

[19] Malkin I. G., Teoriya ustoichivosti dvizheniya, Nauka, M., 1966, 532 pp. | MR | Zbl