Towards a Prototype of a Spherical Tippe Top
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 2, pp. 391-425.

Voir la notice de l'article provenant de la source Math-Net.Ru

Among spinning objects, the tippe top exhibits one of the most bizarre and counterintuitive behaviours. The commercially available tippe tops basically consist of a section of a sphere with a rod. After spinning on its rounded body, the top flips over and continues spinning on the stem. The commonly used simplified mathematical model for the tippe top is a sphere whose mass distribution is axially but not spherically symmetric, spinning on a flat surface subject to a small friction force that is due to sliding. Three main different dynamical behaviours are distinguished: tipping, nontipping, hanging, that is, the top rises but converges to an intermediate state instead of rising all the way to the vertical state. Subclasses according to the stability of relative equilibria can further be distinguished. Our concern is the degree of confidence in the mathematical model predictions, we applied 3D printing and rapid prototyping to manufacture a “3-in-1 toy” that could catch the three main characteristics defining the three main groups in the classification of spherical tippe tops as mentioned above. We propose three designs. This “toy” is suitable to validate the mathematical model qualitatively and quantitatively.
@article{ND_2012_8_2_a12,
     author = {M. C. Ciocci and B. Malengier and B. Langerock and B. Grimonprez},
     title = {Towards a {Prototype} of a {Spherical} {Tippe} {Top}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {391--425},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2012_8_2_a12/}
}
TY  - JOUR
AU  - M. C. Ciocci
AU  - B. Malengier
AU  - B. Langerock
AU  - B. Grimonprez
TI  - Towards a Prototype of a Spherical Tippe Top
JO  - Russian journal of nonlinear dynamics
PY  - 2012
SP  - 391
EP  - 425
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2012_8_2_a12/
LA  - ru
ID  - ND_2012_8_2_a12
ER  - 
%0 Journal Article
%A M. C. Ciocci
%A B. Malengier
%A B. Langerock
%A B. Grimonprez
%T Towards a Prototype of a Spherical Tippe Top
%J Russian journal of nonlinear dynamics
%D 2012
%P 391-425
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2012_8_2_a12/
%G ru
%F ND_2012_8_2_a12
M. C. Ciocci; B. Malengier; B. Langerock; B. Grimonprez. Towards a Prototype of a Spherical Tippe Top. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 2, pp. 391-425. http://geodesic.mathdoc.fr/item/ND_2012_8_2_a12/

[1] Perry J., Spinning tops and gyroscopic motions, Dover, New York, 1957, 102 pp.; Perri Dzh., Vraschayuschiisya volchok, NITs «Regulyarnaya i khaoticheskaya dinamika», Inst. kompyutern. issled., M.–Izhevsk, 2001, 112 pp.

[2] Cohen R. J., “The tippe top revisited”, Amer. J. Phys., 45:1 (1977), 12–17 | DOI

[3] Gray C. G., Nickel B. G., “Constants of the motion for nonslipping tippe tops and other tops with round pegs”, Amer. J. Phys., 68:9 (2000), 821–828 | DOI

[4] Or A. C., “The dynamics of a tippe top”, SIAM J. Appl. Math., 54:3 (1994), 597–609 | DOI | MR | Zbl

[5] Bou-Rabee N. M., Marsden J. E., Romero L. A., “Tippe top inversion as a dissipation-induced instability”, SIAM J. Appl. Dyn. Syst., 3:3 (2004), 352–377 | DOI | MR | Zbl

[6] Routh E. J., Dynamics of a system of rigid bodies, MacMillan, New York, 1905, 431 pp. ; Raus E. Dzh., Dinamika sistemy tverdykh tel, V 2-kh tt., Nauka, M., 1983, 464 pp. | Zbl | MR

[7] Braams C. M., “On the influence of friction on the motion of a top”, Physica, 18 (1952), 503–514 | DOI | MR | Zbl

[8] Jellett J. H., A treatise on the theory of friction, MacMillan, London, 1872, 220 pp.; Dzhellett Dzh. Kh., Traktat po teorii treniya, NITs «Regulyarnaya i khaoticheskaya dinamika», Inct. kompyutern. issled., M.–Izhevsk, 2009, 264 pp.

[9] Kane T. R., Levinson D., “A realistic solution of the symmetric top problem”, J. Appl. Mech., 45:4 (1978), 903–909 | DOI | MR

[10] Ciocci M. C., Langerock B., “Dynamics of the tippe top via Routhian reduction”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12:6 (2007), 602–614 | MR | Zbl

[11] Branicki B. Y. M., Moffatt H. K., Shimomura Y., “Dynamics of an axisymmetric body spinning on a horizontal surface: 3. Geometry of steady state structures for convex bodies”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462, no. 2066, 2006, 371–390 | DOI | MR | Zbl

[12] Branicki B. Y. M., Shimomura Y., “Dynamics of an axisymmetric body spinning on a horizontal surface: 4. Stability of steady spin states and the «rising egg» phenomenon for convex axisymmetric bodies”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462, no. 2075, 2006, 3253–3275 | DOI | MR | Zbl

[13] Ebenfeld S., Scheck F., “A new analysis of the tippe top: Asymptotic states and Liapunov stability”, Ann. Physics, 243:2 (1995), 195–217 | DOI | MR | Zbl

[14] Rauch-Wojciechowski S., Sköldstam M., Glad T., “Mathematical analysis of the tippe top”, Regul. Chaotic Dyn., 10:4 (2005), 333–362 | DOI | MR | Zbl

[15] Moffatt H. K., Shimomura Y., Branicki M., “Dynamics of an axisymmetric body spinning on a horizontal surface: 1. Stability and the gyroscopic approximation”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460, no. 2052, 2004, 3643–3672 | DOI | MR | Zbl

[16] Bastiaens R., Detand J., Rysman O., Defloo T., “Efficient use of traditional-, rapid- and virtual prototyping in the industrial product development process”, Proc. of the 4th Internat. Conf. on Adv. Res. in Virtual and Rapid Prototyping, VRAP'09 (Lleira, Portugal, 2009), eds. P. J. da Silva Bártolo et al., Taylor Francis, London, 2010, 515–520

[17] Arnold V. I., Kozlov V. V., Neishtadt A. I., “Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki”, Dinamicheskie sistemy –3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 3, ed. V. I. Arnold, VINITI, M., 1985, 5–290 | MR

[18] Moffatt H. K., Tokieda T., “Celt reversals: A prototype of chiral dynamics”, Proc. Roy. Soc. Edinburgh Sect. A, 138:2 (2008), 361–368 | DOI | MR | Zbl

[19] Tokieda T., Private communications, in Proceedings of the Geometric Mechanics and its Applications (MASIE) (Lausanne, Switzerland, July 2004)

[20] Friedl Ch., Der Stehaufkreisel, Zulassungsarbeit zum 1. Staatsexamen, Universität Augsburg, 1997, 63 pp. http://www.physik.uni-augsburg.de/~wobsta/tippetop/index.shtml.en

[21] Ueda T., Sasaki K., Watanabe S., “Motion of the tippe top: Gyroscopic balance condition and stability”, SIAM J. Appl. Dyn. Syst., 4:4 (2005), 1159–1194 | DOI | MR | Zbl