On the motion of free disc on the rough horisontal plane
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 1, pp. 83-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of a disk sliding on a horizontal plane under the action of dry friction forces. The model is based on three hypotheses. The law of interaction of a small element of the disk’s surface with the plane is the Amonton–Coulomb law, the pressure distribution over the contact patch is a linear (generally speaking, time-dependent) function of Cartesian coordinates, the height of the disk is not high. The equations of motion possess a rich group of symmetry, which enables a detailed qualitative analysis of the problem.
Keywords: dry friction
Mots-clés : Amontons–Coulomb law.
@article{ND_2012_8_1_a5,
     author = {T. V. Salnikova and D. V. Treschev and S. R. Gallyamov},
     title = {On the motion of free disc on the rough horisontal plane},
     journal = {Russian journal of nonlinear dynamics},
     pages = {83--101},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2012_8_1_a5/}
}
TY  - JOUR
AU  - T. V. Salnikova
AU  - D. V. Treschev
AU  - S. R. Gallyamov
TI  - On the motion of free disc on the rough horisontal plane
JO  - Russian journal of nonlinear dynamics
PY  - 2012
SP  - 83
EP  - 101
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2012_8_1_a5/
LA  - ru
ID  - ND_2012_8_1_a5
ER  - 
%0 Journal Article
%A T. V. Salnikova
%A D. V. Treschev
%A S. R. Gallyamov
%T On the motion of free disc on the rough horisontal plane
%J Russian journal of nonlinear dynamics
%D 2012
%P 83-101
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2012_8_1_a5/
%G ru
%F ND_2012_8_1_a5
T. V. Salnikova; D. V. Treschev; S. R. Gallyamov. On the motion of free disc on the rough horisontal plane. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 1, pp. 83-101. http://geodesic.mathdoc.fr/item/ND_2012_8_1_a5/

[1] Andronov V. V., Zhuravlëv V. F., Sukhoe trenie v zadachakh mekhaniki, RKhD, M.–Izhevsk, 2010, 184 pp.

[2] Vilke V. G., Izbrannye zadachi mekhaniki, MGU, M., 2010, 70 pp.

[3] Zhuravlëv V. F., “O modeli sukhogo treniya v zadache kacheniya tverdykh tel”, PMM, 62:5 (1998), 762–767 | MR

[4] Zhuravlëv V. F., “Zakonomernosti treniya pri kombinatsii skolzheniya i vercheniya”, MTT, 2003, no. 4, 81–88

[5] Zhuravlëv V. F., “Dinamika tyazhelogo odnorodnogo shara na sherokhovatoi ploskosti”, MTT, 2006, no. 6, 3–9

[6] Zhuravlëv V. F., “Otklik na statyu A. V. Borisova i I. S. Mamaeva «Zakony sokhraneniya, ierarkhiya dinamiki i yavnoe integrirovanie negolonomnykh sistem». Otvet A. V. Borisova”, Nelineinaya dinamika, 6:2 (2010), 365–369

[7] Zhuravlëv V. F., “Otvet A. V. Borisovu”, Nelineinaya dinamika, 6:3 (2010), 671–674 | Zbl

[8] Ivanov A. P., “Dinamicheski sovmestnaya model kontaktnykh napryazhenii pri ploskom dvizhenii tverdogo tela”, PMM, 73:2 (2009), 189–203 | MR | Zbl

[9] Ishlinskii A. Yu., Sokolov B. N., Chernousko F. L., “O dvizhenii ploskikh tel pri nalichii sukhogo treniya”, MTT, 1981, no. 4, 17–28

[10] Ishkhanyan M. V., Karapetyan A. V., “Dinamika odnorodnogo shara na gorizontalnoi ploskosti s uchetom treniya skolzheniya, vercheniya i kacheniya”, MTT, 2010, no. 2, 3–14

[11] Karapetyan A. V., “Dvukhparametricheskaya model treniya i ee svoistva”, PMM, 73:4 (2009), 515–519 | MR

[12] Karapetyan A. V., “O modelirovanii sil treniya v dinamike shara na ploskosti”, PMM, 75:4 (2010), 531–535

[13] Karapetyan A. V., Rusinova A. M., “O dinamike diska na naklonnoi ploskosti s treniem”, MTT, 2011 (to appear)

[14] Rusinova A. M., “O dinamike diska na naklonnoi ploskosti s treniem v ramkakh dinamicheski sovmestnoi modeli treniya”, PMM, 75:3 (2011), 396–401

[15] Kireenkov A. A., “O dvizhenii odnorodnogo vraschayuschegosya diska po ploskosti v usloviyakh kombinirovannogo treniya”, MTT, 2002, no. 1, 60–67 | MR

[16] Kireenkov A. A., “Metod vychisleniya sily treniya i momenta sil treniya v kombinirovannoi modeli sukhogo treniya dlya krugovykh ploschadok kontakta”, MTT, 2003, no. 3, 48–53 | MR

[17] Kireenkov A. A., “Svyazannye modeli treniya skolzheniya i kacheniya”, Dokl. RAN, 419:6 (2008), 759–762 | Zbl

[18] Kireenkov A. A., “Svyazannaya model treniya skolzheniya i kacheniya v dinamike tel na sherokhovatoi ploskosti”, MTT, 2008, no. 3, 116–131

[19] Kireenkov A. A., Semendyaev S. V., Filatov V. F., “Eksperimentalnoe issledovanie svyazannykh dvumernykh modelei treniya skolzheniya i vercheniya”, MTT, 2010, no. 6, 192–202

[20] Kozlov V. V., “Lagranzheva mekhanika i sukhoe trenie”, Nelineinaya dinamika, 6:4 (2010), 855–868

[21] Kozlov V. V., “Zamechaniya o sukhom trenii i negolonomnykh svyazyakh”, Nelineinaya dinamika, 6:4 (2010), 903–906

[22] Mak-Millan V. D., Dinamika tverdogo tela, GIIL, M., 1951, 467 pp.

[23] Neimark Yu. I., Fufaev N. A., Dinamika negolonomnykh sistem, Nauka, M., 1993, 521 pp.

[24] Samsonov V. A., “O trenii pri skolzhenii i verchenii tela”, Vestn. MGU. Ser. 1. Matem. Mekhan., 1981, no. 2, 76–78

[25] Contensou P., “Couplage entre frottement de glissement et frottement de pivotement dans la théorie de la toupie”, Kreiselprobleme gyrodinamics: Symp. Celerina 1962, ed. H. Ziegler, Springer, Berlin, 1963, 201–216; Kontensu P., “Svyaz mezhdu treniem skolzheniya i treniem vercheniya i ee uchet v teorii volchka”, Problemy giroskopii, Mir, M., 1967, 60–77

[26] Farkas Z., Bartels G., Unger T., Wolf D., “Frictional coupling between sliding and spinning motion”, Phys. Rev. Lett., 90:24 (2003), 248302, 4 pp. | DOI

[27] Weidman P. D., Malhotra Ch. P., “On the terminal motion of sliding spinning disks with uniform Coulomb friction”, Phys. D, 233 (2007), 1–13 | DOI | MR | Zbl