On invariant manifolds of nonholonomic systems
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 1, pp. 57-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

Invariant manifolds of equations governing the dynamics of conservative nonholonomic systems are investigated. These manifolds are assumed to be uniquely projected onto configuration space. The invariance conditions are represented in the form of generalized Lamb’s equations. Conditions are found under which the solutions to these equations admit a hydrodynamical description typical of Hamiltonian systems. As an illustration, nonholonomic systems on Lie groups with a left-invariant metric and left-invariant (right-invariant) constraints are considered.
Keywords: invariant manifold, vortex manifold, Bernoulli’s theorem, Helmholtz’ theorem.
Mots-clés : Lamb’s equation
@article{ND_2012_8_1_a3,
     author = {V. V. Kozlov},
     title = {On invariant manifolds of nonholonomic systems},
     journal = {Russian journal of nonlinear dynamics},
     pages = {57--69},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2012_8_1_a3/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - On invariant manifolds of nonholonomic systems
JO  - Russian journal of nonlinear dynamics
PY  - 2012
SP  - 57
EP  - 69
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2012_8_1_a3/
LA  - ru
ID  - ND_2012_8_1_a3
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T On invariant manifolds of nonholonomic systems
%J Russian journal of nonlinear dynamics
%D 2012
%P 57-69
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2012_8_1_a3/
%G ru
%F ND_2012_8_1_a3
V. V. Kozlov. On invariant manifolds of nonholonomic systems. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 1, pp. 57-69. http://geodesic.mathdoc.fr/item/ND_2012_8_1_a3/

[1] Arzhanykh I. S., Pole impulsov, Nauka, Tashkent, 1965, 231 pp.

[2] Kozlov V. V., Obschaya teoriya vikhrei, Izdatelskii dom «Udmurtskii universitet», Izhevsk, 1998, 238 pp.

[3] Kozlov V. V., “Ob invariantnykh mnogoobraziyakh uravnenii Gamiltona”, PMM (to appear)

[4] Kartan E., Integralnye invarianty, Gostekhizdat, M.–L., 1940, 216 pp.

[5] Godbiion K., Differentsialnaya geometriya i analiticheskaya mekhanika, Mir, M., 1973, 188 pp.

[6] Kozlov V. V., “Zamechaniya o statsionarnykh vikhrevykh dvizheniyakh sploshnoi sredy”, PMM, 47:2 (1983), 341–342 | MR

[7] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, URSS, M., 2002, 414 pp.

[8] Kozlov V. V., “O suschestvovanii integralnogo invarianta gladkikh dinamicheskikh sistem”, PMM, 51:4 (1987), 538–545 | MR | Zbl

[9] Fedorov Yu. N., Kozlov V. V., “Various aspects of $n$-dimentional rigid body dinamics”, Dynamical systems in classical mechanics, Adv. Math. Sci. Amer. Math. Soc. Transl. Ser. 2, 168, ed. V. V. Kozlov, AMS, Providence, RI, 1995, 141–171 | MR

[10] Suslov G. K., Teoreticheskaya mekhanika, Gostekhizdat, M.–L., 1946, 655 pp.

[11] Veselov A. P., Veselova L. E., “Potoki na gruppakh Li s negolonomnoi svyazyu i integriruemye negamiltonovy sistemy”, Funkts. analiz i ego pril., 20:4 (1986), 65–66 | MR | Zbl

[12] Kozlov V. V., Kolesnikov N. N., “O teoremakh dinamiki”, PMM, 42:1 (1978), 28–33 | MR