Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2012_8_1_a2, author = {A. V. Tsiganov}, title = {On the {bi-Hamiltonian} structure of the {Chaplygin} and {Borisov--Mamaev--Fedorov} systems at a zero constant of {areas.~II}}, journal = {Russian journal of nonlinear dynamics}, pages = {43--55}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2012_8_1_a2/} }
TY - JOUR AU - A. V. Tsiganov TI - On the bi-Hamiltonian structure of the Chaplygin and Borisov--Mamaev--Fedorov systems at a zero constant of areas.~II JO - Russian journal of nonlinear dynamics PY - 2012 SP - 43 EP - 55 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2012_8_1_a2/ LA - ru ID - ND_2012_8_1_a2 ER -
%0 Journal Article %A A. V. Tsiganov %T On the bi-Hamiltonian structure of the Chaplygin and Borisov--Mamaev--Fedorov systems at a zero constant of areas.~II %J Russian journal of nonlinear dynamics %D 2012 %P 43-55 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2012_8_1_a2/ %G ru %F ND_2012_8_1_a2
A. V. Tsiganov. On the bi-Hamiltonian structure of the Chaplygin and Borisov--Mamaev--Fedorov systems at a zero constant of areas.~II. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 1, pp. 43-55. http://geodesic.mathdoc.fr/item/ND_2012_8_1_a2/
[1] Bogoyavlenskii O. I., “Integrable cases of the dynamics of a rigid body, and integrable systems on the spheres $S^n$”, Math. USSR-Izv., 27 (1986), 203–218 | DOI
[2] Borisov A. V., Fedorov Yu. N., “O dvukh vidoizmenennykh integriruemykh zadachakh dinamiki”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhan., 1995, no. 6, 102–105 | MR
[3] Borisov A. V., Mamaev I. S., Marikhin V. G., “Yavnoe integrirovanie odnoi negolonomnoi zadachi”, Dokl. RAN, 422:4 (2008), 475–478 | MR | Zbl
[4] Borisov A. V., Fedorov Yu. N., Mamaev I. S., “Chaplygin ball over a fixed sphere: An explicit integration”, Regul. Chaotic Dyn., 13:6 (2008), 557–571 | DOI | MR | Zbl
[5] Borisov A. V., Mamaev I. S., “Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems”, Regul. Chaotic Dyn., 13:5 (2008), 443–490 | DOI | MR | Zbl
[6] Borisov A. V., Kilin A. A., Mamaev I. S., “Obobschenie preobrazovaniya Chaplygina i yavnoe integrirovanie sharovogo podvesa”, Nelineinaya dinamika, 7:2 (2011), 313–338 | MR
[7] Chaplygin S. A., “O katanii shara po gorizontalnoi ploskosti”, Matem. sb., 24:1 (1903), 139–168 | Zbl
[8] Dragović V., Gajić B., Jovanović B., “Generalizations of classical integrable nonholonomic rigid body systems”, J. Phys. A, 31:49 (1998), 9861–-9869 | DOI | MR | Zbl
[9] Eilbeck J. C., Ènol'skii V. Z., Kuznetsov V. B., Tsiganov A. V., “Linear $r$-matrix algebra for classical separable systems”, J. Phys. A, 27 (1994), 567–578 | DOI | MR | Zbl
[10] Jacobi C. G. J., Vorlesungen über Dynamik, Reimer, Berlin, 1884, 300 pp.; Yakobi K. G., Lektsii po dinamike, Gostekhizdat, L., 1936, 272 pp.
[11] Kozlov V. V., “K teorii integrirovaniya uravnenii negolonomnoi mekhaniki”, Uspekhi mekhaniki, 8:3 (1985), 85–107 | MR
[12] Rosochatius E., Über die Bewegung eines Punktes, Inaugural Dissertation, Univ. Göttingen, Berlin, 1877
[13] Tsiganov A. V., “The Stäckel systems and algebraic curves”, J. Math. Phys., 40 (1999), 279–298 | DOI | MR | Zbl
[14] Tsiganov A. V., “Duality between integrable Stäckel systems”, J. Phys. A, 32 (1999), 7965–7982 | DOI | MR | Zbl
[15] Tsiganov A. V., “Integrable Euler top and nonholonomic Chaplygin ball”, J. Geomet. Mech., 3 (2011), 337–362 ; (2010), arXiv: 1002.1123 | DOI | MR
[16] Tsyganov A. V., “Deformatsii kanonicheskoi skobki Puassona dlya negolonomnykh sistem Chaplygina i Borisova–Mamaeva–Fedorova pri nulevoi konstante ploschadei: 1”, Nelineinaya dinamika, 7:3 (2011), 577–601
[17] Wojciechowski S., “Integrable one-particle potentials related to the Neumann systems and the Jacobi problem of geodesic motion on an ellipsoid”, Phys. Lett. A, 107 (1985), 106–111 | DOI | MR | Zbl