On the bi-Hamiltonian structure of the Chaplygin and Borisov--Mamaev--Fedorov systems at a zero constant of areas.~II
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 1, pp. 43-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main aim of the second part of the paper is a construction of the rational potentials, which may be added to the Hamiltonians of the Chaplygin and Borisov–Mamaev–Fedorov systems without loss of integrability. All these potentials may be considered as natural nonholonomic generalizations of the standard separable potentials associated with an elliptic (or sphero-conical) coordinate system on the sphere.
Keywords: nonholonomic mechanics, Chaplygin sphere
Mots-clés : Poisson brackets.
@article{ND_2012_8_1_a2,
     author = {A. V. Tsiganov},
     title = {On the {bi-Hamiltonian} structure of the {Chaplygin} and {Borisov--Mamaev--Fedorov} systems at a zero constant of {areas.~II}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {43--55},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2012_8_1_a2/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - On the bi-Hamiltonian structure of the Chaplygin and Borisov--Mamaev--Fedorov systems at a zero constant of areas.~II
JO  - Russian journal of nonlinear dynamics
PY  - 2012
SP  - 43
EP  - 55
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2012_8_1_a2/
LA  - ru
ID  - ND_2012_8_1_a2
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T On the bi-Hamiltonian structure of the Chaplygin and Borisov--Mamaev--Fedorov systems at a zero constant of areas.~II
%J Russian journal of nonlinear dynamics
%D 2012
%P 43-55
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2012_8_1_a2/
%G ru
%F ND_2012_8_1_a2
A. V. Tsiganov. On the bi-Hamiltonian structure of the Chaplygin and Borisov--Mamaev--Fedorov systems at a zero constant of areas.~II. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 1, pp. 43-55. http://geodesic.mathdoc.fr/item/ND_2012_8_1_a2/

[1] Bogoyavlenskii O. I., “Integrable cases of the dynamics of a rigid body, and integrable systems on the spheres $S^n$”, Math. USSR-Izv., 27 (1986), 203–218 | DOI

[2] Borisov A. V., Fedorov Yu. N., “O dvukh vidoizmenennykh integriruemykh zadachakh dinamiki”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhan., 1995, no. 6, 102–105 | MR

[3] Borisov A. V., Mamaev I. S., Marikhin V. G., “Yavnoe integrirovanie odnoi negolonomnoi zadachi”, Dokl. RAN, 422:4 (2008), 475–478 | MR | Zbl

[4] Borisov A. V., Fedorov Yu. N., Mamaev I. S., “Chaplygin ball over a fixed sphere: An explicit integration”, Regul. Chaotic Dyn., 13:6 (2008), 557–571 | DOI | MR | Zbl

[5] Borisov A. V., Mamaev I. S., “Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems”, Regul. Chaotic Dyn., 13:5 (2008), 443–490 | DOI | MR | Zbl

[6] Borisov A. V., Kilin A. A., Mamaev I. S., “Obobschenie preobrazovaniya Chaplygina i yavnoe integrirovanie sharovogo podvesa”, Nelineinaya dinamika, 7:2 (2011), 313–338 | MR

[7] Chaplygin S. A., “O katanii shara po gorizontalnoi ploskosti”, Matem. sb., 24:1 (1903), 139–168 | Zbl

[8] Dragović V., Gajić B., Jovanović B., “Generalizations of classical integrable nonholonomic rigid body systems”, J. Phys. A, 31:49 (1998), 9861–-9869 | DOI | MR | Zbl

[9] Eilbeck J. C., Ènol'skii V. Z., Kuznetsov V. B., Tsiganov A. V., “Linear $r$-matrix algebra for classical separable systems”, J. Phys. A, 27 (1994), 567–578 | DOI | MR | Zbl

[10] Jacobi C. G. J., Vorlesungen über Dynamik, Reimer, Berlin, 1884, 300 pp.; Yakobi K. G., Lektsii po dinamike, Gostekhizdat, L., 1936, 272 pp.

[11] Kozlov V. V., “K teorii integrirovaniya uravnenii negolonomnoi mekhaniki”, Uspekhi mekhaniki, 8:3 (1985), 85–107 | MR

[12] Rosochatius E., Über die Bewegung eines Punktes, Inaugural Dissertation, Univ. Göttingen, Berlin, 1877

[13] Tsiganov A. V., “The Stäckel systems and algebraic curves”, J. Math. Phys., 40 (1999), 279–298 | DOI | MR | Zbl

[14] Tsiganov A. V., “Duality between integrable Stäckel systems”, J. Phys. A, 32 (1999), 7965–7982 | DOI | MR | Zbl

[15] Tsiganov A. V., “Integrable Euler top and nonholonomic Chaplygin ball”, J. Geomet. Mech., 3 (2011), 337–362 ; (2010), arXiv: 1002.1123 | DOI | MR

[16] Tsyganov A. V., “Deformatsii kanonicheskoi skobki Puassona dlya negolonomnykh sistem Chaplygina i Borisova–Mamaeva–Fedorova pri nulevoi konstante ploschadei: 1”, Nelineinaya dinamika, 7:3 (2011), 577–601

[17] Wojciechowski S., “Integrable one-particle potentials related to the Neumann systems and the Jacobi problem of geodesic motion on an ellipsoid”, Phys. Lett. A, 107 (1985), 106–111 | DOI | MR | Zbl