A reply to ``Comments'' by A.\,V.~Tsiganov (ND, 2011, no.~3, p.~715)
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 1, pp. 167-172.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{ND_2012_8_1_a11,
     author = {P. E. Ryabov},
     title = {A reply to {``Comments''} by {A.\,V.~Tsiganov} {(ND,} 2011, no.~3, p.~715)},
     journal = {Russian journal of nonlinear dynamics},
     pages = {167--172},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2012_8_1_a11/}
}
TY  - JOUR
AU  - P. E. Ryabov
TI  - A reply to ``Comments'' by A.\,V.~Tsiganov (ND, 2011, no.~3, p.~715)
JO  - Russian journal of nonlinear dynamics
PY  - 2012
SP  - 167
EP  - 172
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2012_8_1_a11/
LA  - ru
ID  - ND_2012_8_1_a11
ER  - 
%0 Journal Article
%A P. E. Ryabov
%T A reply to ``Comments'' by A.\,V.~Tsiganov (ND, 2011, no.~3, p.~715)
%J Russian journal of nonlinear dynamics
%D 2012
%P 167-172
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2012_8_1_a11/
%G ru
%F ND_2012_8_1_a11
P. E. Ryabov. A reply to ``Comments'' by A.\,V.~Tsiganov (ND, 2011, no.~3, p.~715). Russian journal of nonlinear dynamics, Tome 8 (2012) no. 1, pp. 167-172. http://geodesic.mathdoc.fr/item/ND_2012_8_1_a11/

[1] Tsyganov A. V., “Zamechanie k state P. E. Ryabova «Yavnoe integrirovanie i topologiya sluchaya D. N. Goryacheva»”, Nelineinaya dinamika, 7:3 (2011), 715–717

[2] Ryabov P. E., “Yavnoe integrirovanie i topologiya sluchaya D. N. Goryacheva”, Dokl. RAN, 439:3 (2011), 315–318 | MR | Zbl

[3] Chaplygin S. A., “Novoe chastnoe reshenie zadachi o dvizhenii tverdogo tela v zhidkosti”, Tr. otd. fizich. nauk ob-va lyubitelei estestvoznaniya, 11:2 (1903), 7–10

[4] Goryachev D. N., “Novye sluchai integriruemosti dinamicheskikh uravnenii Eilera”, Izv. Varshavsk. un-ta, 3 (1916), 1–13

[5] Tsiganov A. V., “On the generalized Chaplygin system”, Zap. nauchn. sem. POMI, 374 (2010), 250–267 | MR

[6] Tsiganov A. V., “On the generalized Chaplygin system”, J. Math. Sci. (N. Y.), 168:8 (2010), 901–911 | DOI | MR

[7] Ryabov P. E., Separation of variables in one partial integrable case of Goryachev, arXiv: [nlin.SI] 1012.4379v2

[8] Ryabov P. E., The separation of variables and bifurcations of first integrals in one problem of D. N. Goryachev, arXiv: [nlin.SI] 1102.2588v1

[9] Yehia H. M., “Comment on «On the Kowalevsky–Goryachev–Chaplygin gyrostat»”, J. Phys. A, 35:49 (2002), 10669–10670 | DOI | MR | Zbl

[10] Kowalevski S., “Sur le problème de la rotation d’un corps solide autour d’un point fixe”, Acta Math., 12 (1889), 177–232 | DOI | MR

[11] Perepiska S. V. Kovalevskoi i G. Mittag-Lefflera, Nauchnoe nasledstvo, 7, Nauka, M., 1984, 316 pp.

[12] Kötter F., “Sur le cas traité par $\text{M}^{\text{me}}$ Kowalevski de rotation d’un corps solide pesant autour d’un point fixe”, Acta Math., 17 (1893), 209–263 | DOI | MR

[13] Appelrot G. G., “Ne vpolne simmetrichnye tyazhelye giroskopy”, Dvizhenie tverdogo tela vokrug nepodvizhnoi tochki, AN SSSR, M.–L., 1940, 61–156

[14] Dullin H. R., Richter P. H., Veselov A. P., “Action variables of the Kovalevskaya top”, Regul. Chaotic Dyn., 3:3 (1998), 18–31 | DOI | MR | Zbl

[15] Komarov I. V., “Remarks on Kowalevski's top”, J. Phys. A., 34:11 (2001), 2111–2120 | DOI | MR | Zbl

[16] Zhukovskii N. E., “Geometricheskaya interpretatsiya rassmotrennogo S. V. Kovalevskoi sluchaya dvizheniya tyazhelogo tverdogo tela okolo nepodvizhnoi tochki”, Matem. sb., 19:1 (1896), 45–93

[17] Golubev V. V., Lektsii po integrirovaniyu uravnenii dvizheniya tyazhelogo tverdogo tela okolo nepodvizhnoi tochki, GITTL, M., 1953, 287 pp.

[18] Ipatov A. F., “Dvizhenie giroskopa S. V. Kovalevskoi na granitse oblasti ultraelliptichnosti”, Uchen. zap. Petrozavodsk. un-ta, 18:2 (1970), 6–93

[19] Borisov A. V., Mamaev I. S., Sovremennye metody teorii integriruemykh sistem, IKI, M.–Izhevsk, 2003, 296 pp.

[20] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, IKI, M.–Izhevsk, 2005, 576 pp.