Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2012_8_1_a1, author = {V. S. Anishchenko and S. V. Astakhov and Ya. I. Boev and J. Kurths}, title = {Poincar\'e recurrences in a system with non-strange chaotic attractor}, journal = {Russian journal of nonlinear dynamics}, pages = {29--41}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2012_8_1_a1/} }
TY - JOUR AU - V. S. Anishchenko AU - S. V. Astakhov AU - Ya. I. Boev AU - J. Kurths TI - Poincar\'e recurrences in a system with non-strange chaotic attractor JO - Russian journal of nonlinear dynamics PY - 2012 SP - 29 EP - 41 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2012_8_1_a1/ LA - ru ID - ND_2012_8_1_a1 ER -
%0 Journal Article %A V. S. Anishchenko %A S. V. Astakhov %A Ya. I. Boev %A J. Kurths %T Poincar\'e recurrences in a system with non-strange chaotic attractor %J Russian journal of nonlinear dynamics %D 2012 %P 29-41 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2012_8_1_a1/ %G ru %F ND_2012_8_1_a1
V. S. Anishchenko; S. V. Astakhov; Ya. I. Boev; J. Kurths. Poincar\'e recurrences in a system with non-strange chaotic attractor. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 1, pp. 29-41. http://geodesic.mathdoc.fr/item/ND_2012_8_1_a1/
[1] Afraimovich V., Ugalde E., Urias J., Fractal dimension for Poincaré recurrences, Monograph Series on Nonlinear Science and Complexity, 2, Elsevier, Amsterdam, 2006, 258 pp. ; Afraimovich V., Ugalde E., Urias Kh., Fraktalnye razmernosti dlya vremen vozvrascheniya Puankare, NITs «Regulyarnaya i khaoticheskaya dinamika», Inst. kompyutern. issled., M.–Izhevsk, 2011, 292 pp. | DOI | MR | Zbl
[2] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, Chast 1, NITs «Regulyarnaya i khaoticheskaya dinamika», Inst. kompyutern. issled., M.–Izhevsk, 2004, 416 pp.
[3] Kac M., Probability and related topics in physical sciences, With special lectures by G. E. Uhlenbeck, A. R. Hibbs, and B. van der Pol (Lect. in Appl. Math., Proc. of the Summer Seminar, Boulder, Colorado, 1957), Interscience, London, 1959, 266 pp. ; Kats M., Veroyatnost i smezhnye voprosy v fizike, Mir, M., 1965, 409 pp. | MR | Zbl | Zbl
[4] Anischenko V. S., Khairulin M. E., “Vliyanie indutsirovannogo shumom krizisa attraktorov na kharakteristiki vremen vozvrata Puankare”, Pisma v ZhTF, 37 (2011), 25–43
[5] Afraimovich V., “Pesin's dimension for Poincaré recurrences”, Chaos, 7:1 (1997), 7–20 | DOI | MR | Zbl
[6] Afraimovich V. S., Lin W.-W., Rulkov N. F., “Fractal dimension for Poicaré recurrences as an indicator of synchronized chaotic regimes”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10:10 (2000), 2323–2337 | DOI | MR | Zbl
[7] Gao J. B., “Recurrence time statistics for chaotic systems and their applications”, Phys. Rev. Lett., 83:16 (1999), 3178–3181 | DOI
[8] Ott E., Grebogi C., Yorke J., “Controlling chaos”, Phys. Rev. Lett., 64:11 (1990), 1196–1199 | DOI | MR | Zbl
[9] Anischenko V. S., Vadivasova T. E., Astakhov V. V., Nelineinaya dinamika khaoticheskikh i stokhasticheskikh sistem, Izd-vo Sarat. un-ta, Saratov, 1999, 368 pp.
[10] Hasselblatt B., Pesin Y., Pesin entropy formula, 2008 http://www.scholarpedia.org/article/Pesin_entropy_formula | Zbl
[11] Adler R., Downarowicz T., Misiurewicz M., Topological entropy., 2008 http://www.scholarpedia.org/article/Topological_entropy
[12] Anishchenko V., Khairulin M., Strelkova G., Kurths J., “Statistical characteristics of the Poincaré return times for a one-dimensional non hyperbolic map”, Phys. J. B Condens. Matter Phys., 82 (2011), 219–225 | MR