The problem of determining the inclination angle of a pendulum on a cylinder
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 4, pp. 837-844
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of determining the phase coordinates of a pendulum on a cylinder by measurements of the inclination angle of the cylinder relative to the pendulum is formulated and solved. A necessary and sufficient condition for observability is found. A linear Luenberger observer is constructed whose output variables are used to close a linear feedback control system. Numerical experiments are performed showing the possibility of using this type of control (by means of variables of the observer) in a nonlinear model of controlled motion of a pendulum on a cylinder.
Keywords:
linear observer, inverted pendulum, pendulum on a cylinder, two-wheeled pendulum.
Mots-clés : Luenberger observer
Mots-clés : Luenberger observer
@article{ND_2011_7_4_a6,
author = {V. N. Belotelov},
title = {The problem of determining the inclination angle of a pendulum on a cylinder},
journal = {Russian journal of nonlinear dynamics},
pages = {837--844},
year = {2011},
volume = {7},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ND_2011_7_4_a6/}
}
V. N. Belotelov. The problem of determining the inclination angle of a pendulum on a cylinder. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 4, pp. 837-844. http://geodesic.mathdoc.fr/item/ND_2011_7_4_a6/
[1] Belotelov V. N., Dinamika i upravlenie avtonomnym mobilnym robotom s dvumya soosnymi kolesami, Kand. dis. $\dots$ kand. fiz.-mat. nauk, MGU, 2010
[2] Belotelov V. N., Martynenko Yu. G., “Upravlenie prostranstvennym dvizheniem perevernutogo mayatnika, ustanovlennogo na kolesnoi pare”, Izv. RAN. MTT, 2006, no. 3, 25–42
[3] Martynenko Yu. G., Formalskii A. M., “K teorii upravleniya monotsiklom”, PMM, 69:4 (2005), 569–583 | MR | Zbl
[4] Antsaklis P. J., Michel A. N., Linear systems, Birkhäuser, Boston, 2006, 670 pp. | MR
[5] Luenberger D. G., Determining the state of a linear system with observers of low dynamic order, Ph.D. Dissertation, Dept. of Elec. Engrg., Stanford University, Stanford, CA, 1963