The problem of determining the inclination angle of a pendulum on a cylinder
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 4, pp. 837-844.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of determining the phase coordinates of a pendulum on a cylinder by measurements of the inclination angle of the cylinder relative to the pendulum is formulated and solved. A necessary and sufficient condition for observability is found. A linear Luenberger observer is constructed whose output variables are used to close a linear feedback control system. Numerical experiments are performed showing the possibility of using this type of control (by means of variables of the observer) in a nonlinear model of controlled motion of a pendulum on a cylinder.
Keywords: linear observer, inverted pendulum, pendulum on a cylinder, two-wheeled pendulum.
Mots-clés : Luenberger observer
@article{ND_2011_7_4_a6,
     author = {V. N. Belotelov},
     title = {The problem of determining the inclination angle of a pendulum on a cylinder},
     journal = {Russian journal of nonlinear dynamics},
     pages = {837--844},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_4_a6/}
}
TY  - JOUR
AU  - V. N. Belotelov
TI  - The problem of determining the inclination angle of a pendulum on a cylinder
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 837
EP  - 844
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_4_a6/
LA  - ru
ID  - ND_2011_7_4_a6
ER  - 
%0 Journal Article
%A V. N. Belotelov
%T The problem of determining the inclination angle of a pendulum on a cylinder
%J Russian journal of nonlinear dynamics
%D 2011
%P 837-844
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_4_a6/
%G ru
%F ND_2011_7_4_a6
V. N. Belotelov. The problem of determining the inclination angle of a pendulum on a cylinder. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 4, pp. 837-844. http://geodesic.mathdoc.fr/item/ND_2011_7_4_a6/

[1] Belotelov V. N., Dinamika i upravlenie avtonomnym mobilnym robotom s dvumya soosnymi kolesami, Kand. dis. $\dots$ kand. fiz.-mat. nauk, MGU, 2010

[2] Belotelov V. N., Martynenko Yu. G., “Upravlenie prostranstvennym dvizheniem perevernutogo mayatnika, ustanovlennogo na kolesnoi pare”, Izv. RAN. MTT, 2006, no. 3, 25–42

[3] Martynenko Yu. G., Formalskii A. M., “K teorii upravleniya monotsiklom”, PMM, 69:4 (2005), 569–583 | MR | Zbl

[4] Antsaklis P. J., Michel A. N., Linear systems, Birkhäuser, Boston, 2006, 670 pp. | MR

[5] Luenberger D. G., Determining the state of a linear system with observers of low dynamic order, Ph.D. Dissertation, Dept. of Elec. Engrg., Stanford University, Stanford, CA, 1963