On the influence of the wheels deformability on the differential drive robot dynamics
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 4, pp. 803-822.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of determining the minimum number of wheel deformation parameters to adequately describe the vehicle dynamics is considered. The necessity to include some system parameter into consideration is proposed to determine via check of stabilization problem solvability (of a given unperturbed motion to nonasymptotic stability in all variables). In this paper, as a test case the problem of stabilization of rectilinear steady motion of the simplest and most studied model of differential drive robot is selected. Computational experiments made via PyStab software show that the formal realization of the controllability criterion for complete system does not always provide the practical solvability of stabilization problem. In this case the stabilizing control is determined by solution of linear-quadratic problem via N. N. Krasovskiy method for controllable linear subsystem. To learn about the stability of the full nonlinear system closed with found control, methods of analytical mechanics and nonlinear stability theory are involved. The study of the robot dynamics is performed by PyStab. This software is intended for automation of research of mechanical systems stability and stabilization problems. In the transition to the numerical consideration along with PyStab NSA software is used since calculation time and the structure of the nonlinear terms of equations of perturbed motion will depend on what stage of the calculations the substitution of numerical parameters of the system is performed.
Keywords: analytical mechanics, stability, stabilization, differential drive robot, wheels deformability.
@article{ND_2011_7_4_a4,
     author = {A. Ya. Krasinskiy and D. R. Kayumova},
     title = {On the influence of the wheels deformability on the differential drive robot dynamics},
     journal = {Russian journal of nonlinear dynamics},
     pages = {803--822},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_4_a4/}
}
TY  - JOUR
AU  - A. Ya. Krasinskiy
AU  - D. R. Kayumova
TI  - On the influence of the wheels deformability on the differential drive robot dynamics
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 803
EP  - 822
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_4_a4/
LA  - ru
ID  - ND_2011_7_4_a4
ER  - 
%0 Journal Article
%A A. Ya. Krasinskiy
%A D. R. Kayumova
%T On the influence of the wheels deformability on the differential drive robot dynamics
%J Russian journal of nonlinear dynamics
%D 2011
%P 803-822
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_4_a4/
%G ru
%F ND_2011_7_4_a4
A. Ya. Krasinskiy; D. R. Kayumova. On the influence of the wheels deformability on the differential drive robot dynamics. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 4, pp. 803-822. http://geodesic.mathdoc.fr/item/ND_2011_7_4_a4/

[1] Evgrafov V. V., Dinamika i upravlenie dvizheniem kolesnykh robotov, Kand. dis. $\dots$ kand. fiz.- mat. nauk, MGU, 2008

[2] Abrarova E. V., Burov A. A., Stepanov S. Ya., Shevale D. P., “Ob uravneniyakh dvizheniya sistemy tyagach-polupritsep so stsepkoi tipa «pyatoe koleso»”, Zadachi issledovaniya ustoichivosti i stabilizatsii dvizheniya, VTs RAN, M., 1998, 45–72

[3] Neimark Yu. I., Fufaev N. A., “Ustoichivost krivolineinogo dvizheniya ekipazha na ballonnykh kolesakh”, PMM, 35:5 (1971), 899–907 | Zbl

[4] Otchet o nauchno-issledovatelskoi rabote «Analiticheskaya mekhanika negolonomnykh sistem i ustoichivost ikh dvizhenii», ruk. A. Ya. Krasinskii. Proekt 19/01 FFI GKNT Uzbekistana. Nomer gosudarstvennoi registratsii 01.01.0011346, Tashkent, 2003, 187 pp.

[5] Turaev Kh. T., Fufaev N. A., Musarskii R. A., Teoriya dvizheniya sistem s kacheniem, Fan, Tashkent, 1987, 158 pp.

[6] Vilke V. G., Kozhevnikov I. F., “Kachenie kolesa s armirovannoi shinoi po ploskosti bez proskalzyvaniya”, PMM, 65:6 (2001), 944–957 | Zbl

[7] Levin M. A., Fufaev N. A., Teoriya kacheniya deformiruemogo kolesa, Nauka, M., 1989, 269 pp.

[8] Budanov V. M., Devyanin E. A., “O dvizhenii kolesnykh robotov”, PMM, 67:2 (2003), 244–255 | MR | Zbl

[9] Pavlovskii V. E., Evgrafov V. V., Pavlovskii V. V., Petrovskaya N. V., “Dinamika, modelirovanie, upravlenie mobilnymi robotami”, Materialy Pospelovskikh chtenii, 2007 http://posp.raai.org/data/posp2007/SIR/vlpavl.doc

[10] Kalman R., Falb P., Arbib M., Ocherki po matematicheskoi teorii sistem, URSS, M., 2010, 400 pp.

[11] Martynenko Yu. G., “Upravlenie dvizheniem mobilnykh kolesnykh robotov”, Fundament. i prikl. matem., 11:8 (2005), 29–80

[12] Lure A. I., Analiticheskaya mekhanika, Fizmatlit, M., 1961, 824 pp.

[13] Shulgin M. F., O nekotorykh differentsialnykh uravneniyakh analiticheskoi dinamiki i ikh integrirovanii, Izd-vo SAGU, Tashkent, 1958, 183 pp.

[14] Rumyantsev V. V., “Ob upravlenii i stabilizatsii sistem s tsiklicheskimi koordinatami”, PMM, 36:6 (1972), 966–976 | MR | Zbl

[15] Neimark Yu. I., Fufaev N. A., Dinamika negolonomnykh sistem., Nauka, M., 1967, 520 pp.

[16] http://www.maplesoft.com

[17] Krasinskii A. Ya., Atazhanov B. Kh., “O zadache stabilizatsii ustanovivshikhsya dvizhenii negolonomnykh sistem S. A. Chaplygina”, Problemy nelineinogo analiza v inzhenernykh sistemakh, 13:2(28) (2007), 74–86

[18] Krasinskii A. Ya., Khalikov A. A., Iofe V. V, Kayumova D. R., Svidetelstvo o gos. registratsii programmy dlya EVM 011615362, Rossiiskaya Federatsiya. Programmnoe sostavlenie uravnenii dvizheniya i issledovanie stabilizatsii mekhanicheskikh dvizhenii, 2011. Pravoobladatel: GOU VPO «Moskovskii gosudarstvennyi universitet prikladnoi biotekhnologii». Zayavka 2011613568; zaregistrirovana v Reestre programm dlya EVM 23 maya 2011 g.

[19] Krasinskii A. Ya., “Ob ustoichivosti i stabilizatsii dvizhenii mekhatronnykh sistem s izbytochnymi koordinatami”, Tezisy dokladov XI mezhdunarodnoi konferentsii «Ustoichivost i kolebaniya nelineinykh sistem upravleniya», IPU RAN, M., 2010, 197–198

[20] Krasovskii N. N., “Problemy stabilizatsii upravlyaemykh dvizhenii”, Teoriya ustoichivosti dvizheniya, ed. I. G. Malkin, Nauka, M., 1967, 475–514

[21] Sirotin A. N., “O zadache optimalnoi po energozatratam pereorientatsii s odnovremennym tormozheniem sfericheski simmetrichnogo tela s nefiksirovannym vremenem”, PMM, 68:5 (2004), 833–846 | MR | Zbl

[22] Kamenkov G. V., Ustoichivost i kolebaniya nelineinykh sistem, v. 2, Nauka, M., 1972, 214 pp.

[23] Veretennikov V. G., Ustoichivost i kolebaniya nelineinykh sistem., Nauka, M., 1984, 320 pp.

[24] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, GITTL, M.–L., 1950, 472 pp.

[25] Malkin I. G., Teoriya ustoichivosti dvizheniya., Nauka, M., 1966, 530 pp.

[26] Krasinskii A. Ya., Modul po avtomatizatsii issledovaniya ustoichivosti nelineinykh sistem, Gosudarstvennoe patentnoe vedomstvo Respubliki Uzbekistan. Reshenie ob ofitsialnoi registratsii programmy dlya EVM DGU0097, 2005

[27] Ilin V. A., Poznyak E. G., Kurs matematicheskogo analiza: Chast 1, URSS, M., 2005, 648 pp.

[28] Sharp R. S., Alstead C. J., “The influence of structural flexibilities on the straight-running stability of motorcycles”, Vehicle System Dynamics, 9 (1980), 327–357 | DOI

[29] Krasinskii A. Ya., “Ob odnom metode issledovaniya ustoichivosti i stabilizatsii neizolirovannykh ustanovivshikhsya dvizhenii mekhanicheskikh sistem”, Izbr. tr. VIII Mezhdunar. seminara «Ustoichivost i kolebaniya nelineinykh sistem upravleniya», IPU RAN, M., 2004, 97–103, elektronnoe izdanie