Structural properties and classification on kinematic and dynamic models of wheeled mobile robots
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 4, pp. 733-769.

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of the kinematic and dynamic models of wheeled mobile robots is analyzed. It is shown that, for a large class of possible configurations, they can be classified into five types, characterized by generic structures of the model equations. For each type of model the following questions are addressed: (ir)reducibility and (non)holonomity, mobility and controllability, configuration of the motorization, and feedback equivalence.
Keywords: wheeled mobile robots, kinematic and dynamic models, nonholonomity, control.
@article{ND_2011_7_4_a1,
     author = {G. Campion and G. Bastin and B. D'Andrea-Novel},
     title = {Structural properties and classification on kinematic and dynamic models of wheeled mobile robots},
     journal = {Russian journal of nonlinear dynamics},
     pages = {733--769},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_4_a1/}
}
TY  - JOUR
AU  - G. Campion
AU  - G. Bastin
AU  - B. D'Andrea-Novel
TI  - Structural properties and classification on kinematic and dynamic models of wheeled mobile robots
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 733
EP  - 769
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_4_a1/
LA  - ru
ID  - ND_2011_7_4_a1
ER  - 
%0 Journal Article
%A G. Campion
%A G. Bastin
%A B. D'Andrea-Novel
%T Structural properties and classification on kinematic and dynamic models of wheeled mobile robots
%J Russian journal of nonlinear dynamics
%D 2011
%P 733-769
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_4_a1/
%G ru
%F ND_2011_7_4_a1
G. Campion; G. Bastin; B. D'Andrea-Novel. Structural properties and classification on kinematic and dynamic models of wheeled mobile robots. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 4, pp. 733-769. http://geodesic.mathdoc.fr/item/ND_2011_7_4_a1/

[1] Bastin G., Campion G., “On adaptive linearizing control of omnidirectional mobile robots”, MTNS-89: Proc. Internat. Symp. on the Mathematical Theory of Networks and Systems (Amsterdam, Netherlands, 1989), v. 2, Progress in Systems and Control Theory, 4, eds. M. A. Kaashoek, J. H. van Schuppen, A. C. M. Ran, Birkhäuser, Boston, 1990, 531–538 | MR

[2] Samson C., Ait-Abderahim K., “Feedback control of a nonholonomic wheeled cart in Cartesian space”, Proc. IEEE Internat. Conf. Robotics and Automation (Sacramento, CA, 1991), v. 2, 1991, 1136–1141 | DOI

[3] Canudas de Wit C., Sordalen O. J., “Exponential stabilization of mobile robots with nonholonomic constraints”, IEEE Conf. Decision and Control (Brighton, England, 1991), 692–697 ; IEEE Transactions on Automatic Control, 37:11 (1992), 1791–1797 | MR | DOI | MR | Zbl

[4] Laumond J. P., “Controllability of a multibody mobile robot”, ICAR (Pisa, Italy, 1991), 1991, 1033–1038; IEEE Transactions on Robotics and Automation, 9:6 (1993), 755–763 | DOI

[5] Badreddin E., Mansour M., “Fuzzy-tuned state-feedback control of a nonholonomic mobile robot”, Proc. of the 12th World Congr. of the IFAC (Sidney, Australia, 1993), v. 2, 1993, 212–215

[6] Murray R. M., Sastry S. S., “Nonholonomic motion planning: Steering using sinusoids”, IEEE Trans. Automat. Contr., 38 (1993), 700–716 | DOI | MR | Zbl

[7] Rouchon P., Fliess M., Lévine J., Martin P., “Flatness and motion planning: The car with $n$ trailers”, Proc. of the 2nd European Control Conf. (Groningen, The Netherlands, 1993), 1993, 1518–1522

[8] Pomet J. B., Thuillot B., Bastin G., Campion G., “A hybrid strategy for the feedback stabilization of nonholonomic mobile robots”, IEEE Internat. Conf. Robotics and Automation (Nice, France, 1992), 1992, 129–135

[9] Muir P. F., Neuman C. P., “Kinematic modeling for feedback control of an omnidirectional wheeled mobile robot”, Proc. IEEE Conf. Robotics and Automation (Raleigh, NC, 1987), 1987, 1772–1778

[10] Killough S. M., Pin F. G., “Design of an omnidirectional and holonomic wheeled platform design”, Proc. IEEE Conf. Robotics and Automation (Nice, France, 1992), 1992, 84–90 | DOI

[11] d'Andréa-Novel B., Bastin G., Campion G., “Modeling and control of nonholonomic wheeled mobile robots”, Proc. IEEE Conf. Robotics and Automation (Sacramento, CA, 1991), 1991, 1130–1135 | DOI

[12] Muir P. F., Neuman C. P., “Kinematic modeling of wheeled mobile robots”, J. Robotic Syst., 4:2 (1987), 281–329 | DOI

[13] Alexander J. C., Maddocks J. H., “On the kinematics of wheeled mobile robots”, Internat. J. Robotics Res., 8:5 (1989), 15–27 | DOI

[14] Helmers C., “Ein Heldenleben (or A hero's life)”, Robotics Age, 5:2 (1983), 7–16 ; 44–45

[15] Balmer C., “Avatar: A home built robot”, Robotics Age, 4:1 (1988), 20–25

[16] Holland J. M., “Rethinking robot mobility”, Robotics Age, 7:1 (1988), 26–30

[17] Nijmeijer H., van der Schaft A. J., Nonlinear dynamical control systems, Springer, New York, 1990, 492 pp. | MR | Zbl

[18] Isidori A., Nonlinear control systems, 2nd ed., Springer, Berlin, 1989, 479 pp. | MR

[19] Marino R., “On the largest feedback linearizable subsystem”, Syst. Contr. Lett., 6 (1986), 345–351 | DOI | MR | Zbl

[20] Martin P., Contribution à l'étude des systèmes différentiellement plats, Ph.D. thesis, École nationale supérieure des mines de Paris, 1992

[21] d'Andréa-Novel B., Campion G., Bastin G., “Control of nonholonomic wheeled mobile robots by state feedback linearization”, Int. J. Robotics Res., 14:6 (1995), 543–559 | DOI

[22] Brockett R. W., “Asymptotic stability and feedback stabilization”, Differential geometric control theory, eds. R. W. Brockett, R. S. Millmann, H. J. Sussmann, Birkhäuser, Boston, 1983, 181–191 | MR

[23] Coron J.-M., “Global asymptotic stabilization for controllable systems without drift”, Math. Control Signals Systems, 5:3 (1992), 295–312 | DOI | MR | Zbl

[24] Pomet J. B., “Explicit design of time-varying stabilizing control laws for a class of time varying controllable systems whithout drift”, Syst. Contr. Lett., 18 (1992), 147–158 | DOI | MR | Zbl

[25] Campion G., d'Andréa-Novel B., Bastin G., “Controllability and state feedback stabilization of nonholonomic mechanical systems”, Advanced Robot Control: Proc. of the Internat. Workshop on Nonlinear and Adaptive Control: Issues in Robotics (France, Grenoble, 1990), Lecture Notes in Control and Information Sciences, 162, ed. C. Canudas de Wit, Springer, Berlin, 1990, 106–124 | DOI | MR

[26] Bloch A. M., McClamroch N. H., Reyhanoglu M., “Control and stabilization of nonholonomic dynamic systems”, IEEE Trans. Automat. Contr., 37 (1992), 1746–1757 | DOI | MR | Zbl

[27] Campion G., d'Andréa-Novel B., Bastin G., “Modeling and state feedback control of nonholonomic mechanical systems”, IEEE Conf. Decision and Control (Brighton, England, 1991), 1991, 1184–1189