Stopping dynamics of sliding and spinning bodies on a rough plane surface
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 3, pp. 549-558.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a qualitative theory of stopping dynamics of solids moving on a plane surface with an arbitrary distribution of normal stresses in the contact area. We studied the equations of motion describing the combined action of the dry friction acting on a sliding and spinning body all the way long before the motion ceases, calculated the movement time, and the distance traveled. Finally we identified the localization of the instantaneous center of rotation at the time of the complete stop, which depends on the mass distribution within the body and on the asymptotic behavior of the friction force and torque.
Keywords: dry friction, flat motion, instantaneous center of rotation.
@article{ND_2011_7_3_a9,
     author = {O. B. Fedichev and P. O. Fedichev},
     title = {Stopping dynamics of sliding and spinning bodies on a rough plane surface},
     journal = {Russian journal of nonlinear dynamics},
     pages = {549--558},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_3_a9/}
}
TY  - JOUR
AU  - O. B. Fedichev
AU  - P. O. Fedichev
TI  - Stopping dynamics of sliding and spinning bodies on a rough plane surface
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 549
EP  - 558
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_3_a9/
LA  - ru
ID  - ND_2011_7_3_a9
ER  - 
%0 Journal Article
%A O. B. Fedichev
%A P. O. Fedichev
%T Stopping dynamics of sliding and spinning bodies on a rough plane surface
%J Russian journal of nonlinear dynamics
%D 2011
%P 549-558
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_3_a9/
%G ru
%F ND_2011_7_3_a9
O. B. Fedichev; P. O. Fedichev. Stopping dynamics of sliding and spinning bodies on a rough plane surface. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 3, pp. 549-558. http://geodesic.mathdoc.fr/item/ND_2011_7_3_a9/

[1] Ishlinskii A. Yu., Sokolov B. N., Chernousko F. L., “O dvizhenii ploskikh tel pri nalichii sukhogo treniya”, Izv. AN SSSR, MTT, 1981, no. 4, 17–28

[2] Voyenli K., Eriksen E., “On the motion of an ice hockey puck”, Amer. J. Phys., 53:12 (1985), 1149–1153 | DOI

[3] Goyal S., Ruina A., Papadopoulos J., “Planar sliding with dry friction: Part 1: Limit surface and moment function”, Wear, 143 (1991), 307–330 | DOI

[4] Goyal S., Ruina A., Papadopoulos J., “Planar sliding with dry friction: Part 2: Dynamics of motion”, Wear, 143 (1991), 331–352 | DOI

[5] Farkas Z., Bartels G., Unger T., Wolf D. E., “Frictional coupling between sliding and spinning motion”, Phys. Rev. Lett., 90:24 (2003), 248302, 4 pp. | DOI

[6] Weidman P. D., Malhotra C. P., “On the terminal motion of sliding spinning disks with uniform Coulomb friction”, Phys. D, 233:1 (2007), 1–13 | DOI | MR | Zbl

[7] Zhuravlev V. F., “O modeli sukhogo treniya v zadache kacheniya tverdykh tel”, PMM, 62:5 (1998), 762–767 | MR

[8] Kireenkov A. A., “O dvizhenii odnorodnogo vraschayuschegosya diska po ploskosti v usloviyakh kombinirovannogo treniya”, Izv. RAN, MTT, 2002, no. 1, 60–67 | MR

[9] Rozenblat G. M., “Ob integrirovanii uravnenii dvizheniya diska po sherokhovatoi ploskosti”, Izv. RAN, MTT, 2007, no. 4, 65–71

[10] Zhuravlev V. F., Kireenkov A. A., “O razlozheniyakh Pade v zadache o dvumernom kulonovom trenii”, Izv. RAN, MTT, 2005, no. 2, 3–14

[11] Ivanov A. P., “O dvizhenii ploskikh tel pri nalichii treniya pokoya”, Izv. RAN, MTT, 2003, no. 4, 89–94

[12] Leine R. I., Glocker Ch., “A set-valued force law for spatial Coulomb–Contensou friction”, Eur. J. Mech. A Solids, 22 (2003), 193–216 | DOI | MR | Zbl