On nonlinear Meissners equation
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 3, pp. 531-547.

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonlinear equation of motion for a pendulum-type system is investigated. It differs from the classical equation of a mathematical pendulum in the presence of a parametric disturbance. The potential energy of the «pendulum» is a two-stage periodic step function of time. The equation depends on two parameters that characterize the time-averaged value of a parametric disturbance and the depth of its «ripple». These parameters can take on arbitrary values. There exist two equilibrium configurations corresponding to the hanging and inverse «pendulum». The problem of stability of these equilibria is considered. In the first approximation it necessitates an analysis of the well-known linear Meissner equation. A detailed investigation of this equation is carried out supplementing and specifying the known results. The nonlinear problem of stability of equilibria is solved.
Keywords: parametric oscillations, stability, resonance, mapping.
@article{ND_2011_7_3_a8,
     author = {A. P. Markeev},
     title = {On nonlinear {Meissners} equation},
     journal = {Russian journal of nonlinear dynamics},
     pages = {531--547},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_3_a8/}
}
TY  - JOUR
AU  - A. P. Markeev
TI  - On nonlinear Meissners equation
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 531
EP  - 547
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_3_a8/
LA  - ru
ID  - ND_2011_7_3_a8
ER  - 
%0 Journal Article
%A A. P. Markeev
%T On nonlinear Meissners equation
%J Russian journal of nonlinear dynamics
%D 2011
%P 531-547
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_3_a8/
%G ru
%F ND_2011_7_3_a8
A. P. Markeev. On nonlinear Meissners equation. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 3, pp. 531-547. http://geodesic.mathdoc.fr/item/ND_2011_7_3_a8/

[1] Meissner E., “Ueber Schüttelerscheinungen in Systemen mit periodisch veränderlicher Elastizität”, Schweizerische Bauzeitung, 72:11 (1918), 95–98

[2] Den-Gartog Dzh. P., Mekhanicheskie kolebaniya, Fizmatlit, M., 1960, 580 pp.

[3] Timoshenko S. P., Kolebaniya v inzhenernom dele, Fizmatlit, M., 1967, 444 pp.

[4] Panovko Ya. G., Vvedenie v teoriyu mekhanicheskikh kolebanii, Fizmatlit, M., 1971, 240 pp.

[5] Chechurin S. L., Parametricheskie kolebaniya i ustoichivost periodicheskogo dvizheniya, LGU, L., 1983, 219 pp.

[6] Bolotin V. V., Dinamicheskaya ustoichivost uprugikh sistem, Gostekhizdat, M., 1956, 600 pp.

[7] Vibratsii v tekhnike, V 6 tt. Spravochnik, v. 1: Kolebaniya lineinykh sistem, 2-e izd., ispr. i dop., ed. V. V. Bolotin, Mashinostroenie, M., 1999, 504 pp.

[8] Makushin V. M., “Dinamicheskaya ustoichivost deformirovannogo sostoyaniya uprugikh sterzhnei”, Tr. MVTU im. Baumana, razd. 3, 1947, 1–83

[9] Van der Pol B., Strutt M. J. O., “On the stability of solutions of Mathieu's equation”, Philos. Mag., Ser. 7, 5 (1928), 18–38 | Zbl

[10] Ctrett M. D. O., Funktsii Lyame, Mate i rodstvennye im v fizike i tekhnike, Gos. izd-vo Ukrainy, Kharkov–Kiev, 1935, 238 pp.

[11] Strelkov S. P., Vvedenie v teoriyu kolebanii, Fizmatlit, M., 1964, 437 pp.

[12] Obmorshev A. N., Vvedenie v teoriyu kolebanii, Fizmatlit, M., 1965, 276 pp.

[13] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Fizmatlit, M., 1974, 431 pp.

[14] Golubev Yu. F., Teoreticheskaya mekhanika, MGU, M., 2000, 719 pp.

[15] Markeev A. P., “Ob odnom sposobe issledovaniya ustoichivosti polozhenii ravnovesiya gamiltonovykh sistem”, Izv. RAN. MTT, 2004, no. 6, 3–12

[16] Markeev A. P., Teoreticheskaya mekhanika, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2007, 592 pp.

[17] Malkin I. G., Teoriya ustoichivosti dvizheniya, Nauka, M., 1966, 530 pp.

[18] Markeev A. P., Lineinye gamiltonovy sistemy i nekotorye zadachi ob ustoichivosti dvizheniya sputnika otnositelno tsentra mass, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2009, 396 pp.