On the stability of Thomson's vortex pentagon inside a circular domain
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 3, pp. 465-488.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the stability problem for a system of five stationary rotation identical point vortices located at the vertices of a regular pentagon inside a circular domain. The main result is the proof of theorems which have been announced the author in paper (Doklady Physics, 2004, vol. 49, no. 11, pp. 658–661).
Mots-clés : point vortex
Keywords: stationary motion, stability, resonance.
@article{ND_2011_7_3_a4,
     author = {Leonid G. Kurakin},
     title = {On the stability of {Thomson's} vortex pentagon inside a circular domain},
     journal = {Russian journal of nonlinear dynamics},
     pages = {465--488},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_3_a4/}
}
TY  - JOUR
AU  - Leonid G. Kurakin
TI  - On the stability of Thomson's vortex pentagon inside a circular domain
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 465
EP  - 488
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_3_a4/
LA  - ru
ID  - ND_2011_7_3_a4
ER  - 
%0 Journal Article
%A Leonid G. Kurakin
%T On the stability of Thomson's vortex pentagon inside a circular domain
%J Russian journal of nonlinear dynamics
%D 2011
%P 465-488
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_3_a4/
%G ru
%F ND_2011_7_3_a4
Leonid G. Kurakin. On the stability of Thomson's vortex pentagon inside a circular domain. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 3, pp. 465-488. http://geodesic.mathdoc.fr/item/ND_2011_7_3_a4/

[1] Meleshko V. V., Konstantinov M. Yu., Dinamika vikhrevykh struktur, Naukova dumka, Kiev, 1993, 282 pp.

[2] Newton P. K., The $n$-vortex problem: Analytical techniques, Appl. Math. Sci., 145, Springer, New York, 2001, 415 pp. | MR | Zbl

[3] Aref H., Newton P. K., Stremler M. A., Tokieda T., Vainchtein D. L., “Vortex crystals”, Adv. Appl. Mech., 39 (2003), 1–79 | DOI

[4] Borisov A. V., Mamaev I. S., Matematicheskie metody dinamiki vikhrevykh struktur, IKI, M.–Izhevsk, 2005, 368 pp.

[5] Kozlov V. V., Obschaya teoriya vikhrei, UdGU, M.–Izhevsk, 1998, 238 pp.

[6] Kurakin L. G., “Ob ustoichivosti pravilnogo vikhrevogo $n$-ugolnika”, Dokl. RAN, 335:6 (1994), 729–731 | Zbl

[7] Kurakin L. G., Yudovich V. I., “O nelineinoi ustoichivosti statsionarnogo vrascheniya pravilnogo vikhrevogo mnogougolnika”, Dokl. RAN, 384:4 (2002), 476–482

[8] Kurakin L. G., Yudovich V. I., “The stability of stationary rotation of a regular vortex polygon”, Chaos, 12 (2002), 574–595 | DOI | MR | Zbl

[9] Kurakin L. G., “O nelineinoi ustoichivosti pravilnykh vikhrevykh mnogougolnikov i mnogogrannikov na sfere”, Dokl. RAN, 388:4 (2003), 482–487

[10] Kurakin L. G., “On nonlinear stability of the regular vortex systems on a sphere”, Chaos, 14 (2004), 592–602 | DOI | MR | Zbl

[11] Kurakin L. G., “Ustoichivost, rezonansy i neustoichivost pravilnykh vikhrevykh mnogougolnikov vnutri krugovoi oblasti”, Dokl. RAN, 399:1 (2004), 52–55

[12] Havelock T. H., “The stability of motion of rectilinear vortices in ring formation”, Philos. Mag., Ser. 7, 11:70 (1931), 617–633

[13] Kurakin L. G., “On stability of a regular vortex polygon in the circular domain”, J. Math. Fluid Mech., 7:3, Supplem. (2005), S376–S386 | DOI | MR | Zbl

[14] Kurakin L. G., “Ob ustoichivosti tomsonovskikh vikhrevykh konfiguratsii vnutri krugovoi oblasti”, Nelineinaya dinamika, 5:3 (2009), 295–317

[15] Kurakin L. G., “On the stability of Thomson's vortex configurations inside a circular domain”, Regul. Chaotic Dyn., 15:1 (2010), 40–58 | DOI | MR

[16] Miln-Tomson L. M., Teoreticheskaya gidrodinamika, Mir, M., 1964, 660 pp.

[17] Routh E. J., A treatise on the stability of a given state motion, Macmillan, London, 1877, 108 pp.

[18] Kurakin L. G., Yudovich V. I., “Ustoichivost statsionarnogo vrascheniya pravilnogo vikhrevogo mnogougolnika”, Fundamentalnye i prikladnye problemy teorii vikhrei, Sb. st., eds. A. V. Borisov, I. S. Mamaev, M. A. Sokolovskii, IKI, M.–Izhevsk, 2003, 238–303

[19] Proskuryakov I. V., Sbornik zadach po lineinoi algebre, Nauka, M., 1984, 336 pp.

[20] Kurakin L. G., Ostrovskaya I. V., “Ob ustoichivosti tomsonovskogo vikhrevogo mnogougolnika s chetnym chislom vikhrei vne krugovoi oblasti”, Sib. matem. zhurn., 51:3 (2010), 584–598 | MR | Zbl

[21] Kurakin L. G., “Ob ustoichivosti statsionarnogo vrascheniya sistemy trekh ravnoudalennykh vikhrei vne kruga”, PMM, 75:2 (2011), 327–337

[22] Campbell L. J., “Transverse normal modes of finite vortex arrays”, Phys. Rev. A, 24 (1981), 514–534 | DOI

[23] Markeev A. P., Tochki libratsii v nebesnoi mekhanike i kosmodinamike, Nauka, M., 1978, 312 pp.

[24] Sokolskii A. G., “Ob ustoichivosti avtonomnoi gamiltonovoi sistemy s dvumya stepenyami svobody pri rezonanse pervogo poryadka”, PMM, 41:1 (1977), 24–33 | MR

[25] Sokolskii A. G., “Ob ustoichivosti avtonomnoi gamiltonovoi sistemy s dvumya stepenyami svobody v sluchae ravnykh chastot”, PMM, 38:5 (1974), 791–799 | MR | Zbl

[26] Kovalev A. V., Chudnenko A. N., “K ustoichivosti polozhenii ravnovesiya dvumernoi gamiltonovoi sistemy v sluchae ravnykh chastot”, Dokl. AN USSR, 1977, Ser. A, no. 11, 1011–1014 | Zbl

[27] Lerman L. M., Markova A. P., “On stability at the Hamiltonian Hopf bifurcation”, Regul. Chaotic Dyn., 14:1 (2009), 148–162 | DOI | MR

[28] Kunitsyn A. N., Markeev A. P., “Ustoichivost v rezonansnykh sluchayakh”, Itogi nauki i tekhniki. Ser. Obschaya mekhanika, 4, VINITI, M., 1979, 58–139

[29] Markeev A. P., “Ob ustoichivosti kanonicheskoi sistemy s dvumya stepenyami svobody pri nalichii rezonansa”, PMM, 32:4 (1968), 738–744 | MR | Zbl

[30] Arnold V. I., “Dokazatelstvo teoremy A. N. Kolmogorova o sokhranenii uslovno-periodicheskikh dvizhenii pri malom izmenenii funktsii Gamiltona”, UMN, 18:5 (1963), 13–40 | MR | Zbl

[31] Khazin L. G., Shnol E. E., Ustoichivost kriticheskikh polozhenii ravnovesiya, ONTI NTsBI AN SSSR, Puschino, 1985, 216 pp.

[32] Bryuno A. D., “O formalnoi ustoichivosti sistem Gamiltona”, Matem. zametki, 1:3 (1967), 325–330 | MR | Zbl

[33] Arnold V. I., Avez A., Ergodic problems of classical mechanics, Benjamin, New York, 1968, 286 pp. | MR

[34] Moser J., “New aspects in the theory of stability of Hamiltonian systems”, Commun. Pure Appl. Math., 11:1 (1958), 81–114 | DOI | MR | Zbl

[35] Sokolskii A. G., “Ob ustoichivosti lagranzhevykh reshenii ogranichennoi zadachi trekh tel pri kriticheskom otnoshenii mass”, PMM, 39:2 (1975), 366–369 | MR | Zbl

[36] Lyapunov A. M., “Issledovanie odnogo iz osobennykh sluchaev zadachi ob ustoichivosti dvizheniya”, Matem. sb., 17:2 (1893), 253–333 ; Общая задача об устойчивости движения, Гостехиздат, М., 1950, 369–450

[37] Kurakin L. G., “O lyapunovskoi tsepochke kriteriev ustoichivosti v kriticheskom sluchae zhordanovoi 2-kletki”, Dokl. AN, 337:1 (1994), 14–16 | Zbl

[38] Kurakin L. G., “O kriteriyakh ustoichivosti raboty A. M. Lyapunova «Issledovanie odnogo iz osobennykh sluchaev zadachi ob ustoichivosti dvizheniya»”, Vladikavkaz. matem. zhurn., 11:3 (2009), 28–37 | Zbl

[39] Bryuno A. D., Petrov A. G., “O vychislenii gamiltonovoi normalnoi formy”, Dokl. RAN, 410:4 (2006), 474–478 | MR

[40] Bryuno A. D., Stepennaya geometriya v algebraicheskikh i differentsialnykh uravneniyakh, Fizmatlit, M., 1998, 288 pp.