Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2011_7_3_a4, author = {Leonid G. Kurakin}, title = {On the stability of {Thomson's} vortex pentagon inside a circular domain}, journal = {Russian journal of nonlinear dynamics}, pages = {465--488}, publisher = {mathdoc}, volume = {7}, number = {3}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2011_7_3_a4/} }
Leonid G. Kurakin. On the stability of Thomson's vortex pentagon inside a circular domain. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 3, pp. 465-488. http://geodesic.mathdoc.fr/item/ND_2011_7_3_a4/
[1] Meleshko V. V., Konstantinov M. Yu., Dinamika vikhrevykh struktur, Naukova dumka, Kiev, 1993, 282 pp.
[2] Newton P. K., The $n$-vortex problem: Analytical techniques, Appl. Math. Sci., 145, Springer, New York, 2001, 415 pp. | MR | Zbl
[3] Aref H., Newton P. K., Stremler M. A., Tokieda T., Vainchtein D. L., “Vortex crystals”, Adv. Appl. Mech., 39 (2003), 1–79 | DOI
[4] Borisov A. V., Mamaev I. S., Matematicheskie metody dinamiki vikhrevykh struktur, IKI, M.–Izhevsk, 2005, 368 pp.
[5] Kozlov V. V., Obschaya teoriya vikhrei, UdGU, M.–Izhevsk, 1998, 238 pp.
[6] Kurakin L. G., “Ob ustoichivosti pravilnogo vikhrevogo $n$-ugolnika”, Dokl. RAN, 335:6 (1994), 729–731 | Zbl
[7] Kurakin L. G., Yudovich V. I., “O nelineinoi ustoichivosti statsionarnogo vrascheniya pravilnogo vikhrevogo mnogougolnika”, Dokl. RAN, 384:4 (2002), 476–482
[8] Kurakin L. G., Yudovich V. I., “The stability of stationary rotation of a regular vortex polygon”, Chaos, 12 (2002), 574–595 | DOI | MR | Zbl
[9] Kurakin L. G., “O nelineinoi ustoichivosti pravilnykh vikhrevykh mnogougolnikov i mnogogrannikov na sfere”, Dokl. RAN, 388:4 (2003), 482–487
[10] Kurakin L. G., “On nonlinear stability of the regular vortex systems on a sphere”, Chaos, 14 (2004), 592–602 | DOI | MR | Zbl
[11] Kurakin L. G., “Ustoichivost, rezonansy i neustoichivost pravilnykh vikhrevykh mnogougolnikov vnutri krugovoi oblasti”, Dokl. RAN, 399:1 (2004), 52–55
[12] Havelock T. H., “The stability of motion of rectilinear vortices in ring formation”, Philos. Mag., Ser. 7, 11:70 (1931), 617–633
[13] Kurakin L. G., “On stability of a regular vortex polygon in the circular domain”, J. Math. Fluid Mech., 7:3, Supplem. (2005), S376–S386 | DOI | MR | Zbl
[14] Kurakin L. G., “Ob ustoichivosti tomsonovskikh vikhrevykh konfiguratsii vnutri krugovoi oblasti”, Nelineinaya dinamika, 5:3 (2009), 295–317
[15] Kurakin L. G., “On the stability of Thomson's vortex configurations inside a circular domain”, Regul. Chaotic Dyn., 15:1 (2010), 40–58 | DOI | MR
[16] Miln-Tomson L. M., Teoreticheskaya gidrodinamika, Mir, M., 1964, 660 pp.
[17] Routh E. J., A treatise on the stability of a given state motion, Macmillan, London, 1877, 108 pp.
[18] Kurakin L. G., Yudovich V. I., “Ustoichivost statsionarnogo vrascheniya pravilnogo vikhrevogo mnogougolnika”, Fundamentalnye i prikladnye problemy teorii vikhrei, Sb. st., eds. A. V. Borisov, I. S. Mamaev, M. A. Sokolovskii, IKI, M.–Izhevsk, 2003, 238–303
[19] Proskuryakov I. V., Sbornik zadach po lineinoi algebre, Nauka, M., 1984, 336 pp.
[20] Kurakin L. G., Ostrovskaya I. V., “Ob ustoichivosti tomsonovskogo vikhrevogo mnogougolnika s chetnym chislom vikhrei vne krugovoi oblasti”, Sib. matem. zhurn., 51:3 (2010), 584–598 | MR | Zbl
[21] Kurakin L. G., “Ob ustoichivosti statsionarnogo vrascheniya sistemy trekh ravnoudalennykh vikhrei vne kruga”, PMM, 75:2 (2011), 327–337
[22] Campbell L. J., “Transverse normal modes of finite vortex arrays”, Phys. Rev. A, 24 (1981), 514–534 | DOI
[23] Markeev A. P., Tochki libratsii v nebesnoi mekhanike i kosmodinamike, Nauka, M., 1978, 312 pp.
[24] Sokolskii A. G., “Ob ustoichivosti avtonomnoi gamiltonovoi sistemy s dvumya stepenyami svobody pri rezonanse pervogo poryadka”, PMM, 41:1 (1977), 24–33 | MR
[25] Sokolskii A. G., “Ob ustoichivosti avtonomnoi gamiltonovoi sistemy s dvumya stepenyami svobody v sluchae ravnykh chastot”, PMM, 38:5 (1974), 791–799 | MR | Zbl
[26] Kovalev A. V., Chudnenko A. N., “K ustoichivosti polozhenii ravnovesiya dvumernoi gamiltonovoi sistemy v sluchae ravnykh chastot”, Dokl. AN USSR, 1977, Ser. A, no. 11, 1011–1014 | Zbl
[27] Lerman L. M., Markova A. P., “On stability at the Hamiltonian Hopf bifurcation”, Regul. Chaotic Dyn., 14:1 (2009), 148–162 | DOI | MR
[28] Kunitsyn A. N., Markeev A. P., “Ustoichivost v rezonansnykh sluchayakh”, Itogi nauki i tekhniki. Ser. Obschaya mekhanika, 4, VINITI, M., 1979, 58–139
[29] Markeev A. P., “Ob ustoichivosti kanonicheskoi sistemy s dvumya stepenyami svobody pri nalichii rezonansa”, PMM, 32:4 (1968), 738–744 | MR | Zbl
[30] Arnold V. I., “Dokazatelstvo teoremy A. N. Kolmogorova o sokhranenii uslovno-periodicheskikh dvizhenii pri malom izmenenii funktsii Gamiltona”, UMN, 18:5 (1963), 13–40 | MR | Zbl
[31] Khazin L. G., Shnol E. E., Ustoichivost kriticheskikh polozhenii ravnovesiya, ONTI NTsBI AN SSSR, Puschino, 1985, 216 pp.
[32] Bryuno A. D., “O formalnoi ustoichivosti sistem Gamiltona”, Matem. zametki, 1:3 (1967), 325–330 | MR | Zbl
[33] Arnold V. I., Avez A., Ergodic problems of classical mechanics, Benjamin, New York, 1968, 286 pp. | MR
[34] Moser J., “New aspects in the theory of stability of Hamiltonian systems”, Commun. Pure Appl. Math., 11:1 (1958), 81–114 | DOI | MR | Zbl
[35] Sokolskii A. G., “Ob ustoichivosti lagranzhevykh reshenii ogranichennoi zadachi trekh tel pri kriticheskom otnoshenii mass”, PMM, 39:2 (1975), 366–369 | MR | Zbl
[36] Lyapunov A. M., “Issledovanie odnogo iz osobennykh sluchaev zadachi ob ustoichivosti dvizheniya”, Matem. sb., 17:2 (1893), 253–333 ; Общая задача об устойчивости движения, Гостехиздат, М., 1950, 369–450
[37] Kurakin L. G., “O lyapunovskoi tsepochke kriteriev ustoichivosti v kriticheskom sluchae zhordanovoi 2-kletki”, Dokl. AN, 337:1 (1994), 14–16 | Zbl
[38] Kurakin L. G., “O kriteriyakh ustoichivosti raboty A. M. Lyapunova «Issledovanie odnogo iz osobennykh sluchaev zadachi ob ustoichivosti dvizheniya»”, Vladikavkaz. matem. zhurn., 11:3 (2009), 28–37 | Zbl
[39] Bryuno A. D., Petrov A. G., “O vychislenii gamiltonovoi normalnoi formy”, Dokl. RAN, 410:4 (2006), 474–478 | MR
[40] Bryuno A. D., Stepennaya geometriya v algebraicheskikh i differentsialnykh uravneniyakh, Fizmatlit, M., 1998, 288 pp.