On global behaviour of the solutions of system of two Duffing -- Van der Pole equations
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 3, pp. 437-449
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of global behavior of solutions in system of two Duffing – Van der Pole equations close to nonlinear integrable is considered. For regions without unperturbed separatrixes we give partially averaged systems which describe the behavior of solutions of original system in resonant zones. The finiteness of number of non-trivial resonant structures is established. Also we give fully averaged systems which describe the behavior of solutions outside of neighborhoods of nontrivial resonant structures. The results of numerically investigation of these systems are resulted.
Mots-clés :
limit cycles
Keywords: resonances, averaging.
Keywords: resonances, averaging.
@article{ND_2011_7_3_a2,
author = {R. E. Kondrashov and A. D. Morozov},
title = {On global behaviour of the solutions of system of two {Duffing} -- {Van} der {Pole} equations},
journal = {Russian journal of nonlinear dynamics},
pages = {437--449},
publisher = {mathdoc},
volume = {7},
number = {3},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ND_2011_7_3_a2/}
}
TY - JOUR AU - R. E. Kondrashov AU - A. D. Morozov TI - On global behaviour of the solutions of system of two Duffing -- Van der Pole equations JO - Russian journal of nonlinear dynamics PY - 2011 SP - 437 EP - 449 VL - 7 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2011_7_3_a2/ LA - ru ID - ND_2011_7_3_a2 ER -
%0 Journal Article %A R. E. Kondrashov %A A. D. Morozov %T On global behaviour of the solutions of system of two Duffing -- Van der Pole equations %J Russian journal of nonlinear dynamics %D 2011 %P 437-449 %V 7 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2011_7_3_a2/ %G ru %F ND_2011_7_3_a2
R. E. Kondrashov; A. D. Morozov. On global behaviour of the solutions of system of two Duffing -- Van der Pole equations. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 3, pp. 437-449. http://geodesic.mathdoc.fr/item/ND_2011_7_3_a2/