The bifurcation analysis and the Conley index in mechanics
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 3, pp. 649-681
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is concerned with the use of bifurcation analysis and the Conley index in Hamiltonian
dynamical systems. We give the proof of the theorem on the appearance (disappearance) of fixed
points in the case of the Morse index change. We find new relative equilibria in the problem of
the motion of point vortices of equal intensity in a circle.
Keywords:
Morse index; Conley index; bifurcation analysis; bifurcation diagram; Hamiltonian dynamics; fixed point; relative equilibrium.
@article{ND_2011_7_3_a16,
author = {A. V. Bolsinov and A. V. Borisov and I. S. Mamaev},
title = {The bifurcation analysis and the {Conley} index in mechanics},
journal = {Russian journal of nonlinear dynamics},
pages = {649--681},
publisher = {mathdoc},
volume = {7},
number = {3},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ND_2011_7_3_a16/}
}
TY - JOUR AU - A. V. Bolsinov AU - A. V. Borisov AU - I. S. Mamaev TI - The bifurcation analysis and the Conley index in mechanics JO - Russian journal of nonlinear dynamics PY - 2011 SP - 649 EP - 681 VL - 7 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2011_7_3_a16/ LA - ru ID - ND_2011_7_3_a16 ER -
A. V. Bolsinov; A. V. Borisov; I. S. Mamaev. The bifurcation analysis and the Conley index in mechanics. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 3, pp. 649-681. http://geodesic.mathdoc.fr/item/ND_2011_7_3_a16/