The bifurcation analysis and the Conley index in mechanics
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 3, pp. 649-681.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with the use of bifurcation analysis and the Conley index in Hamiltonian dynamical systems. We give the proof of the theorem on the appearance (disappearance) of fixed points in the case of the Morse index change. We find new relative equilibria in the problem of the motion of point vortices of equal intensity in a circle.
Keywords: Morse index; Conley index; bifurcation analysis; bifurcation diagram; Hamiltonian dynamics; fixed point; relative equilibrium.
@article{ND_2011_7_3_a16,
     author = {A. V. Bolsinov and A. V. Borisov and I. S. Mamaev},
     title = {The bifurcation analysis and the {Conley} index in mechanics},
     journal = {Russian journal of nonlinear dynamics},
     pages = {649--681},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_3_a16/}
}
TY  - JOUR
AU  - A. V. Bolsinov
AU  - A. V. Borisov
AU  - I. S. Mamaev
TI  - The bifurcation analysis and the Conley index in mechanics
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 649
EP  - 681
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_3_a16/
LA  - ru
ID  - ND_2011_7_3_a16
ER  - 
%0 Journal Article
%A A. V. Bolsinov
%A A. V. Borisov
%A I. S. Mamaev
%T The bifurcation analysis and the Conley index in mechanics
%J Russian journal of nonlinear dynamics
%D 2011
%P 649-681
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_3_a16/
%G ru
%F ND_2011_7_3_a16
A. V. Bolsinov; A. V. Borisov; I. S. Mamaev. The bifurcation analysis and the Conley index in mechanics. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 3, pp. 649-681. http://geodesic.mathdoc.fr/item/ND_2011_7_3_a16/

[1] Anosov D. V., Bronshtein I. U., “Gladkie dinamicheskie sistemy: Gl. 3: Topologicheskaya dinamika”, Dinamicheskie sistemy-1, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 1, eds. D. V. Anosov, V. I. Arnold, VINITI, M., 1985, 204–229 | MR

[2] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Gamiltonizatsiya negolonomnykh sistem v okrestnosti invariantnykh mnogoobrazii”, Nelineinaya dinamika, 6:4 (2010), 829–854

[3] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Topologiya i ustoichivost integriruemykh sistem”, UMN, 65:2(392) (2010), 71–132 | MR | Zbl

[4] Borisov A. V., Mamaev I. S., Matematicheskie metody dinamiki vikhrevykh struktur, Institut kompyuternykh issledovanii, M.–Izhevsk, 2005, 368 pp.

[5] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya: Metody i prilozheniya, v. 1, Editorial URSS, M., 1998, 333 pp.

[6] Katok S. B., “Bifurkatsionnye mnozhestva i integralnye mnogoobraziya v zadache o dvizhenii tyazhelogo tverdogo tela”, UMN, 27:2 (1972), 126–132 | Zbl

[7] Kilin A. A., Borisov A. V., Mamaev I. S., “Dinamika tochechnykh vikhrei vnutri i vne krugovoi oblasti”, Fundamentalnye i prikladnye problemy teorii vikhrei, Sb. st., eds. A. V. Borisov, I. S. Mamaev, M. A. Sokolovskii, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003, 414–440

[8] Kurakin L. G., “Ustoichivost, rezonansy i neustoichivost pravilnykh vikhrevykh mnogougolnikov vnutri krugovoi oblasti”, Dokl. RAN, 399:1 (2004), 52–55

[9] Kurakin L. G., “Ob ustoichivosti tomsonovskikh vikhrevykh konfiguratsii vnutri krugovoi oblasti”, Nelineinaya dinamika, 5:3 (2009), 295–317

[10] Markeev A. P., Teoreticheskaya mekhanika, Uchebn. posobie dlya vuzov, CheRo, M., 1999, 572 pp.

[11] Mozer Yu., “Lektsii o gamiltonovykh sistemakh”, KAM-teoriya i problemy ustoichivosti, ed. Yu. Mozer, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2001, 141–198

[12] Smeil S., “Topologiya i mekhanika”, UMN, 27:2 (1972), 77–133 | MR | Zbl

[13] Tatarinov Ya. V., “Portrety klassicheskikh integralov zadachi o vraschenii tverdogo tela vokrug nepodvizhnoi tochki”, Vestn. Mosk. un-ta, 1974, no. 6, 99–105

[14] Fomenko A. T., Fuks D. B., Kurs gomotopicheskoi topologii, Nauka, M., 1989, 494 pp.

[15] Albouy A., “Symétrie des configurations centrales de quatre corps”, C. R. Acad. Sci. Paris, Sér. 1, 320 (1995), 217–220 ; Относительные равновесия: Периодические решения, Сб. ст., НИЦ «РХД», Институт компьютерных исследований, М.–Ижевск, 2006, 143–148 | MR | Zbl

[16] Albouy A., “The symmetric central configurations of four equal masses”, Contemp. Math., 198 (1996), 131–135 ; Относительные равновесия: Периодические решения, Сб. ст., НИЦ «РХД», Институт компьютерных исследований, М.–Ижевск, 2006, 149–161 | MR | Zbl

[17] Arango C. A., Ezra G. S., Classical mechanics of dipolar asymmetric top molecules in collinear static electric and nonresonant linearly polarized laser fields: Energy-momentum diagrams, bifurcations and accessible configuration space, arXiv: [physics.class-ph], 23 Nov. 2006 physics/0611231v1 | MR

[18] Armstrong M. A., Basic Topology, Springer, New York–Berlin, 1983, 251 pp. | MR

[19] Borisov A. V., Mamaev I. S., “On the problem of motion of vortex sources on a plane”, Regul. Chaotic Dyn., 11:4 (2006), 455–466 | DOI | MR | Zbl

[20] Charles Conley memorial volume, Special issue of Ergodic theory and dynamical systems, 1988, 409 pp. | MR

[21] Conley Ch., Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, 38, AMS, Providence, RI, 1978, 89 pp. | MR | Zbl

[22] Conley Ch. C., Zehnder R., “Morse-type index theory for flows and periodic solutions for Hamiltonian equations”, Comm. Pure Appl. Math., 37:2 (1984), 207–253 | DOI | MR | Zbl

[23] Grauert H., “On Levi's problem and the imbedding of real-analytic manifolds”, Ann. of Math. (2), 68 (1958), 460–472 | DOI | MR | Zbl

[24] Guckenheimer J., Holmes Ph., Nonlinear oscillations, dynamical systems and bifurcations of vector fields, Springer, New York, 1983, 453 pp. | MR | Zbl

[25] Hampton M., Moeckel R., “Finiteness of stationary configurations of the four-vortex problem”, Trans. Amer. Math. Soc., 361 (2009), 1317–1332 | DOI | MR | Zbl

[26] Havelock T. H., “The stability of motion of rectilinear vortices in ring formation”, Philos. Mag., 11:70 (1931), 617–633

[27] van der Meer J.-C., The Hamiltonian Hopf Bifurcation, Lecture Notes in Math., 1160, Springer, Berlin, 1985, 115 pp. | MR | Zbl

[28] Milnor J. W., Topology from the differentiable viewpoint:, Based on notes by David W. Weaver, Princeton Univ. Press, Princeton, NJ, 1997, 64 pp. | MR | Zbl

[29] Mischaikow K., “The Conley index theory: A brief introduction”, Conley index theory (Warsaw, 1997), Banach Center Publ., 47, Polish Acad. Sci., Warsaw, 1999, 9–19 | MR | Zbl

[30] Mischaikow K., Mrozek M., “Conley index theory”, Conley index: Handbook of dynamical systems, v. 2, Towards applications, ed. B. Fiedler, Elsevier, Amsterdam, 2002, 393–460 | MR | Zbl

[31] O'Neil K., “Clustered equilibria of point vortices”, Regul. Chaotic Dyn., 2011 (to appear)

[32] Shashikanth B. N., “Dissipative N-point-vortex models in the plane”, J. Nonlinear Sci., 20:1 (2010), 81–103 | DOI | MR | Zbl

[33] Yatsuyanagi Yu., Kiwamoto Ya., Tomita H., Sano M. M., Yoshida T., Ebisuzaki T., “Dynamics of two-sign point vortices in positive and negative temperature state”, Phys. Rev. Lett., 94 (2005), 054502, 4 pp. | DOI