Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2011_7_3_a15, author = {S. M. Ramodanov and V. A. Tenenev}, title = {Motion of a body with variable distribution of mass in a boundless viscous liquid}, journal = {Russian journal of nonlinear dynamics}, pages = {635--647}, publisher = {mathdoc}, volume = {7}, number = {3}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2011_7_3_a15/} }
TY - JOUR AU - S. M. Ramodanov AU - V. A. Tenenev TI - Motion of a body with variable distribution of mass in a boundless viscous liquid JO - Russian journal of nonlinear dynamics PY - 2011 SP - 635 EP - 647 VL - 7 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2011_7_3_a15/ LA - ru ID - ND_2011_7_3_a15 ER -
S. M. Ramodanov; V. A. Tenenev. Motion of a body with variable distribution of mass in a boundless viscous liquid. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 3, pp. 635-647. http://geodesic.mathdoc.fr/item/ND_2011_7_3_a15/
[1] Kozlov V. V., Ramodanov S. M., “O dvizhenii v idealnoi zhidkosti tela s zhestkoi obolochkoi i menyayuscheisya geometriei mass”, Dokl. RAN, 382:4 (2002), 478–481
[2] Kozlov V. V., Onischenko D. A., “O dvizhenii v idealnoi zhidkosti tela, soderzhaschego vnutri sebya podvizhnuyu sosredotochennuyu massu”, PMM, 67:4 (2003), 620–633 | MR | Zbl
[3] Kochin N. E., Kibel I. A., Roze N. V., Teoreticheskaya gidromekhanika: Ch. 1, Fizmatlit, M., 1963, 583 pp.
[4] Mougin G., Magnaudet J., “The generalized Kirchhof equations and their application to the interaction between a rigid body and an arbitrary time-dependent viscous flow”, IJMF, 28 (2002), 1837–1851 | Zbl
[5] Howe M. S., “On the force and moment on a body in an incompressible fluid, with application to rigid bodies and bubbles at high and low Reynolds numbers”, Quart. J. Mech. Appl. Math., 48 (1995), 401–426 | DOI | MR | Zbl
[6] Biesheuvel A., Hagmeijer R., “On the force on a body moving in a fluid”, Fluid Dynam. Res., 38 (2006), 716–742 | DOI | MR | Zbl
[7] Benderskii B. Ya., Tenenev V. A., “Prostranstvennye dozvukovye techeniya v oblastyakh so slozhnoi geometriei”, Matem. modelirovanie, 13:8 (2001), 121–127
[8] Mittal R., Dong H., Bozkurttas M., Najjar F. M., Vargas A., von Loebbecke A., “A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries”, J. Comput. Phys., 227 (2008), 4825–4852 | DOI | MR | Zbl
[9] Shlikhting G., Teoriya pogranichnogo sloya, Nauka, M., 1974, 711 pp.