Motion of a body with variable distribution of mass in a boundless viscous liquid
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 3, pp. 635-647.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we consider the motion of a rigid body in a boundless volume of liquid. The body is set in motion by redistribution of internal masses. The mathematical model employs the equations of motion for the rigid body coupled with the hydrodynamic Navier–Stokes equations. The problem is mostly dealt with numerically. Simulations have revealed that the body's trajectory is strongly governed by viscous effects.
Mots-clés : self-propulsion
Keywords: Navier–Stokes equations, viscous vortical motion, numerical methods.
@article{ND_2011_7_3_a15,
     author = {S. M. Ramodanov and V. A. Tenenev},
     title = {Motion of a body with variable distribution of mass in a boundless viscous liquid},
     journal = {Russian journal of nonlinear dynamics},
     pages = {635--647},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_3_a15/}
}
TY  - JOUR
AU  - S. M. Ramodanov
AU  - V. A. Tenenev
TI  - Motion of a body with variable distribution of mass in a boundless viscous liquid
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 635
EP  - 647
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_3_a15/
LA  - ru
ID  - ND_2011_7_3_a15
ER  - 
%0 Journal Article
%A S. M. Ramodanov
%A V. A. Tenenev
%T Motion of a body with variable distribution of mass in a boundless viscous liquid
%J Russian journal of nonlinear dynamics
%D 2011
%P 635-647
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_3_a15/
%G ru
%F ND_2011_7_3_a15
S. M. Ramodanov; V. A. Tenenev. Motion of a body with variable distribution of mass in a boundless viscous liquid. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 3, pp. 635-647. http://geodesic.mathdoc.fr/item/ND_2011_7_3_a15/

[1] Kozlov V. V., Ramodanov S. M., “O dvizhenii v idealnoi zhidkosti tela s zhestkoi obolochkoi i menyayuscheisya geometriei mass”, Dokl. RAN, 382:4 (2002), 478–481

[2] Kozlov V. V., Onischenko D. A., “O dvizhenii v idealnoi zhidkosti tela, soderzhaschego vnutri sebya podvizhnuyu sosredotochennuyu massu”, PMM, 67:4 (2003), 620–633 | MR | Zbl

[3] Kochin N. E., Kibel I. A., Roze N. V., Teoreticheskaya gidromekhanika: Ch. 1, Fizmatlit, M., 1963, 583 pp.

[4] Mougin G., Magnaudet J., “The generalized Kirchhof equations and their application to the interaction between a rigid body and an arbitrary time-dependent viscous flow”, IJMF, 28 (2002), 1837–1851 | Zbl

[5] Howe M. S., “On the force and moment on a body in an incompressible fluid, with application to rigid bodies and bubbles at high and low Reynolds numbers”, Quart. J. Mech. Appl. Math., 48 (1995), 401–426 | DOI | MR | Zbl

[6] Biesheuvel A., Hagmeijer R., “On the force on a body moving in a fluid”, Fluid Dynam. Res., 38 (2006), 716–742 | DOI | MR | Zbl

[7] Benderskii B. Ya., Tenenev V. A., “Prostranstvennye dozvukovye techeniya v oblastyakh so slozhnoi geometriei”, Matem. modelirovanie, 13:8 (2001), 121–127

[8] Mittal R., Dong H., Bozkurttas M., Najjar F. M., Vargas A., von Loebbecke A., “A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries”, J. Comput. Phys., 227 (2008), 4825–4852 | DOI | MR | Zbl

[9] Shlikhting G., Teoriya pogranichnogo sloya, Nauka, M., 1974, 711 pp.