The Lorentz force and its generalizations
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 3, pp. 627-634.

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of the Lorentz force and the related analogy between electromagnetism and inertia are discussed. The problem of invariant manifolds of the equations of motion for a charge in an electromagnetic field and the conditions for these manifolds to be Lagrangian are considered.
Mots-clés : Lorentz force, Coriolis force
Keywords: Maxwell equations, symplectic structure, Lagrangian manifold.
@article{ND_2011_7_3_a14,
     author = {Valery V. Kozlov},
     title = {The {Lorentz} force and its generalizations},
     journal = {Russian journal of nonlinear dynamics},
     pages = {627--634},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_3_a14/}
}
TY  - JOUR
AU  - Valery V. Kozlov
TI  - The Lorentz force and its generalizations
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 627
EP  - 634
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_3_a14/
LA  - ru
ID  - ND_2011_7_3_a14
ER  - 
%0 Journal Article
%A Valery V. Kozlov
%T The Lorentz force and its generalizations
%J Russian journal of nonlinear dynamics
%D 2011
%P 627-634
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_3_a14/
%G ru
%F ND_2011_7_3_a14
Valery V. Kozlov. The Lorentz force and its generalizations. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 3, pp. 627-634. http://geodesic.mathdoc.fr/item/ND_2011_7_3_a14/

[1] Uitteker E., Istoriya teorii efira i elektrichestva, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2001, 512 pp.

[2] Kozlov V. V., Nikishin E. M., “Relyativistskii variant gamiltonova formalizma i volnovye funktsii vodorodopodobnogo atoma”, Vestn. Mosk. un-ta. Ser. 1. Matematika. Mekhanika, 1986, no. 5, 11–20

[3] Arzhanykh I. S., Pole impulsov, Nauka, Tashkent, 1965, 231 pp.

[4] Kozlov V. V., Obschaya teoriya vikhrei, UdGU, Izhevsk, 1998, 238 pp.

[5] Kozlov V. V., “Zamechaniya o statsionarnykh vikhrevykh dvizheniyakh sploshnoi sredy”, PMM, 47:2 (1983), 341–342 | MR

[6] Ziglin S. L., “Rasscheplenie separatris i nesuschestvovanie pervykh integralov v sistemakh differentsialnykh uravnenii tipa gamiltonovykh s dvumya stepenyami svobody”, Izv. AN SSSR, Ser. Matem., 51:5 (1987), 1088–1103