The Lorentz force and its generalizations
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 3, pp. 627-634 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The structure of the Lorentz force and the related analogy between electromagnetism and inertia are discussed. The problem of invariant manifolds of the equations of motion for a charge in an electromagnetic field and the conditions for these manifolds to be Lagrangian are considered.
Mots-clés : Lorentz force, Coriolis force
Keywords: Maxwell equations, symplectic structure, Lagrangian manifold.
@article{ND_2011_7_3_a14,
     author = {Valery V. Kozlov},
     title = {The {Lorentz} force and its generalizations},
     journal = {Russian journal of nonlinear dynamics},
     pages = {627--634},
     year = {2011},
     volume = {7},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_3_a14/}
}
TY  - JOUR
AU  - Valery V. Kozlov
TI  - The Lorentz force and its generalizations
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 627
EP  - 634
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_3_a14/
LA  - ru
ID  - ND_2011_7_3_a14
ER  - 
%0 Journal Article
%A Valery V. Kozlov
%T The Lorentz force and its generalizations
%J Russian journal of nonlinear dynamics
%D 2011
%P 627-634
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/ND_2011_7_3_a14/
%G ru
%F ND_2011_7_3_a14
Valery V. Kozlov. The Lorentz force and its generalizations. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 3, pp. 627-634. http://geodesic.mathdoc.fr/item/ND_2011_7_3_a14/

[1] Uitteker E., Istoriya teorii efira i elektrichestva, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2001, 512 pp.

[2] Kozlov V. V., Nikishin E. M., “Relyativistskii variant gamiltonova formalizma i volnovye funktsii vodorodopodobnogo atoma”, Vestn. Mosk. un-ta. Ser. 1. Matematika. Mekhanika, 1986, no. 5, 11–20

[3] Arzhanykh I. S., Pole impulsov, Nauka, Tashkent, 1965, 231 pp.

[4] Kozlov V. V., Obschaya teoriya vikhrei, UdGU, Izhevsk, 1998, 238 pp.

[5] Kozlov V. V., “Zamechaniya o statsionarnykh vikhrevykh dvizheniyakh sploshnoi sredy”, PMM, 47:2 (1983), 341–342 | MR

[6] Ziglin S. L., “Rasscheplenie separatris i nesuschestvovanie pervykh integralov v sistemakh differentsialnykh uravnenii tipa gamiltonovykh s dvumya stepenyami svobody”, Izv. AN SSSR, Ser. Matem., 51:5 (1987), 1088–1103