On deformations of the canonical Poisson bracket for the nonholonomic Chaplygin and the Borisov--Mamaev--Fedorov systems on zero-level of the area integral.~I
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 3, pp. 577-599.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the nonholonomic Chaplygin and the Borisov–Mamaev–Fedorov systems when the corresponding phase space is equivalent to cotangent bundle to dwo-dimensional sphere. In both cases Poisson bivectors are determined by $L$-tensors with non-zero torsion on the configurational space, in contrast with the well known Eisenhart–Benenti and Turiel constructions.
Keywords: nonholonomic mechanics, Chaplygin sphere
Mots-clés : Poisson brackets.
@article{ND_2011_7_3_a12,
     author = {A. V. Tsiganov},
     title = {On deformations of the canonical {Poisson} bracket for the nonholonomic {Chaplygin} and the {Borisov--Mamaev--Fedorov} systems on zero-level of the area {integral.~I}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {577--599},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_3_a12/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - On deformations of the canonical Poisson bracket for the nonholonomic Chaplygin and the Borisov--Mamaev--Fedorov systems on zero-level of the area integral.~I
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 577
EP  - 599
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_3_a12/
LA  - ru
ID  - ND_2011_7_3_a12
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T On deformations of the canonical Poisson bracket for the nonholonomic Chaplygin and the Borisov--Mamaev--Fedorov systems on zero-level of the area integral.~I
%J Russian journal of nonlinear dynamics
%D 2011
%P 577-599
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_3_a12/
%G ru
%F ND_2011_7_3_a12
A. V. Tsiganov. On deformations of the canonical Poisson bracket for the nonholonomic Chaplygin and the Borisov--Mamaev--Fedorov systems on zero-level of the area integral.~I. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 3, pp. 577-599. http://geodesic.mathdoc.fr/item/ND_2011_7_3_a12/

[1] Borisov A. V., Fëdorov Yu. N., “O dvukh vidoizmenennykh integriruemykh zadachakh dinamiki”, Vestn. Mosk. un-ta. Ser. 1. Matematika. Mekhanika, 1995, no. 6, 102–105 | MR

[2] Borisov A. V., Mamaev I. S., “Gamiltonovost zadachi Chaplygina o kachenii shara”, Matem. zametki, 70:5 (2001), 793–795

[3] Borisov A. V., Mamaev I. S., Marikhin V. G., “Yavnoe integrirovanie odnoi negolonomnoi zadachi”, Dokl. RAN, 422:4 (2008), 475–478 | MR | Zbl

[4] Borisov A. V., Mamaev I. S., “Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems”, Regul. Chaotic Dyn., 13:5 (2008), 443–490 | DOI | MR

[5] Borisov A. V., Fedorov Yu. N., Mamaev I. S., “Chaplygin ball over a fixed sphere: An explicit integration”, Regul. Chaotic Dyn., 13:6 (2008), 557–571 | DOI | MR

[6] Borisov A. V., Kilin A. A., Mamaev I. S., “Obobschenie preobrazovaniya Chaplygina i yavnoe integrirovanie sharovogo podvesa”, Nelineinaya dinamika, 7:2 (2011), 313–338

[7] Chaplygin S. A., “O katanii shara po gorizontalnoi ploskosti”, Matem. sb., 24:1 (1903), 139–168 | Zbl

[8] Koszul J.-L., “Crochet de Schouten–Nijenhuis et cohomologie”, Astérisque Numéro Hors Série, 1985, 257–271 | MR | Zbl

[9] Ohsawa T., Fernandez O. E., Bloch A. M., Zenkov D. V., “Nonholonomic Hamilton–Jacobi theory via Chaplygin hamiltonization”, J. Geom. Phys., 61 (2011), 1263–1291 | DOI | MR | Zbl

[10] Tsiganov A. V., “Canonical transformations of the extended phase space, Toda lattices and the Stackel family of integrable systems”, J. Phys. A, 33 (2000), 4169–4182 | DOI | MR | Zbl

[11] Tsiganov A. V., “On the Steklov–Lyapunov case of the rigid body motion”, Regul. Chaotic Dyn., 9 (2004), 77–89 | DOI | MR | Zbl

[12] Tsiganov A. V., “The Maupertuis principle and canonical transformations of the extended phase space”, J. Nonlinear Math. Phys., 8:1 (2001), 157–182 | DOI | MR | Zbl

[13] Tsiganov A. V., “On the two different bi-Hamiltonian structures for the Toda lattice”, J. Phys. A, 40 (2007), 6395–6406 | DOI | MR | Zbl

[14] Tsiganov A. V., “Change of the time for the periodic Toda lattices and natural systems on the plane with higher order integrals of motion”, Regul. Chaotic Dyn., 14:4–5 (2009), 541–549 | DOI | MR

[15] Tsiganov A. V., “New variables of separation for particular case of the Kowalevski top”, Regul. Chaotic Dyn., 15:6 (2010), 657–667 | DOI | MR

[16] Tsyganov A. V., “O novom razdelenii peremennykh dlya chastnogo sluchaya volchka Kovalevskoi”, Nelineinaya mekhanika, 6:3 (2010), 639–652

[17] Tsiganov A. V., “On natural Poisson bivectors on the sphere”, J. Phys. A, 44 (2011), 105203, 15 pp. | DOI | MR | Zbl

[18] Tsiganov A. V., Integrable Euler top and nonholonomic Chaplygin ball, 2010, arXiv: 1002.1123 | MR

[19] Turiel F., “Structures bihamiltoniennes sur le fibré cotangent”, C. R. Acad. Sci. Paris, Sér. 1. Math., 315 (1992), 1085–1088 | MR | Zbl

[20] Weinstein A., “The modular automorphism group of a Poisson manifold”, J. Geom. Phys., 23 (1997), 379–394 | DOI | MR | Zbl

[21] Yaroschuk V. A., “Novye sluchai suschestvovaniya integralnogo invarianta v zadache o kachenii tverdogo tela bez proskalzyvaniya po nepodvizhnoi poverkhnosti”, Vestn. Mosk. un-ta, Ser. 1, Matematika. Mekhanika, 1992, no. 6, 26–30