On deformations of the canonical Poisson bracket for the nonholonomic Chaplygin and the Borisov--Mamaev--Fedorov systems on zero-level of the area integral.~I
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 3, pp. 577-599

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the nonholonomic Chaplygin and the Borisov–Mamaev–Fedorov systems when the corresponding phase space is equivalent to cotangent bundle to dwo-dimensional sphere. In both cases Poisson bivectors are determined by $L$-tensors with non-zero torsion on the configurational space, in contrast with the well known Eisenhart–Benenti and Turiel constructions.
Keywords: nonholonomic mechanics, Chaplygin sphere
Mots-clés : Poisson brackets.
@article{ND_2011_7_3_a12,
     author = {A. V. Tsiganov},
     title = {On deformations of the canonical {Poisson} bracket for the nonholonomic {Chaplygin} and the {Borisov--Mamaev--Fedorov} systems on zero-level of the area {integral.~I}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {577--599},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_3_a12/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - On deformations of the canonical Poisson bracket for the nonholonomic Chaplygin and the Borisov--Mamaev--Fedorov systems on zero-level of the area integral.~I
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 577
EP  - 599
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_3_a12/
LA  - ru
ID  - ND_2011_7_3_a12
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T On deformations of the canonical Poisson bracket for the nonholonomic Chaplygin and the Borisov--Mamaev--Fedorov systems on zero-level of the area integral.~I
%J Russian journal of nonlinear dynamics
%D 2011
%P 577-599
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_3_a12/
%G ru
%F ND_2011_7_3_a12
A. V. Tsiganov. On deformations of the canonical Poisson bracket for the nonholonomic Chaplygin and the Borisov--Mamaev--Fedorov systems on zero-level of the area integral.~I. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 3, pp. 577-599. http://geodesic.mathdoc.fr/item/ND_2011_7_3_a12/