Two non-holonomic integrable systems of coupled rigid bodies
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 3, pp. 559-568

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers two new integrable systems due to Chaplygin, which describe the rolling of a spherical shell on a plane, with a ball or Lagranges gyroscope inside. All necessary first integrals and an invariant measure are found. The reduction to quadratures is given.
Keywords: non-holonomic constraint; integrability; invariant measure; gyroscope; quadrature; coupled rigid bodies.
@article{ND_2011_7_3_a10,
     author = {A. V. Borisov and I. S. Mamaev},
     title = {Two non-holonomic integrable systems of coupled rigid bodies},
     journal = {Russian journal of nonlinear dynamics},
     pages = {559--568},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_3_a10/}
}
TY  - JOUR
AU  - A. V. Borisov
AU  - I. S. Mamaev
TI  - Two non-holonomic integrable systems of coupled rigid bodies
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 559
EP  - 568
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_3_a10/
LA  - ru
ID  - ND_2011_7_3_a10
ER  - 
%0 Journal Article
%A A. V. Borisov
%A I. S. Mamaev
%T Two non-holonomic integrable systems of coupled rigid bodies
%J Russian journal of nonlinear dynamics
%D 2011
%P 559-568
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_3_a10/
%G ru
%F ND_2011_7_3_a10
A. V. Borisov; I. S. Mamaev. Two non-holonomic integrable systems of coupled rigid bodies. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 3, pp. 559-568. http://geodesic.mathdoc.fr/item/ND_2011_7_3_a10/