Two-gap 3-elliptic solutions of the Boussinesq and the Korteweg--de~Vries equations
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 2, pp. 239-256.

Voir la notice de l'article provenant de la source Math-Net.Ru

The behavior of the two-gap elliptic solutions of the Boussinesq and the KdV equations was examined. These solutions were constructed by the $n$-sheet covering over a torus ($n\leqslant3$). It was shown that the shape of the two-gap elliptic solutions depends on $n$ and doesn't depend on the kind of the nonlinear wave equation.
Mots-clés : soliton, Boussinesq equation
Keywords: KdV equation, theta-function, reduction, covering.
@article{ND_2011_7_2_a3,
     author = {A. O. Smirnov and G. M. Golovachev and E. G. Amosenok},
     title = {Two-gap 3-elliptic solutions of the {Boussinesq} and the {Korteweg--de~Vries} equations},
     journal = {Russian journal of nonlinear dynamics},
     pages = {239--256},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_2_a3/}
}
TY  - JOUR
AU  - A. O. Smirnov
AU  - G. M. Golovachev
AU  - E. G. Amosenok
TI  - Two-gap 3-elliptic solutions of the Boussinesq and the Korteweg--de~Vries equations
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 239
EP  - 256
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_2_a3/
LA  - ru
ID  - ND_2011_7_2_a3
ER  - 
%0 Journal Article
%A A. O. Smirnov
%A G. M. Golovachev
%A E. G. Amosenok
%T Two-gap 3-elliptic solutions of the Boussinesq and the Korteweg--de~Vries equations
%J Russian journal of nonlinear dynamics
%D 2011
%P 239-256
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_2_a3/
%G ru
%F ND_2011_7_2_a3
A. O. Smirnov; G. M. Golovachev; E. G. Amosenok. Two-gap 3-elliptic solutions of the Boussinesq and the Korteweg--de~Vries equations. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 2, pp. 239-256. http://geodesic.mathdoc.fr/item/ND_2011_7_2_a3/

[1] Gardner C., Green I., Kruskal M., Miura R., “A method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19:19 (1967), 1095–1098 | DOI

[2] Lax P. D., “Integrals of non-linear equations of evolution and solitary waves”, Comm. Pure Appl. Math., 21 (1968), 467–490 | DOI | MR | Zbl

[3] Gardner C., “Korteweg–de Vries equation and generalization: IV. The Korteweg–de Vries equation as a Hamiltonian system”, J. Math. Phys., 12 (1971), 1548–1551 | DOI | MR | Zbl

[4] Zakharov V. E., Faddeev L. D., “Uravnenie Kortevega–de Friza — vpolne integriruemaya gamiltonova sistema”, Funkts. analiz i ego pril., 5:4 (1971), 18–27 | MR | Zbl

[5] Zakharov V. E., Shabat A. B., “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–134

[6] Novikov S. P., “Periodicheskaya zadacha dlya uravneniya Kortevega–de Friza”, Funkts. analiz i ego pril., 8:3 (1974), 54–66 | MR | Zbl

[7] Lax P. D., “Periodic solutions of the KdV equations”, Comm. Pure Appl. Math., 28:1 (1975), 141–188 | DOI | MR | Zbl

[8] Dubrovin B. A., Novikov S. P., “Periodicheskaya zadacha dlya uravnenii Kortevega–de Friza i Shturma–Liuvillya: ikh svyaz s algebraicheskoi geometriei”, Dokl. AN SSSR, 219:3 (1974), 19–22 | MR | Zbl

[9] Its A. R., Matveev V. B., “Operatory Shrëdingera s konechnozonnym spektrom i $N$-solitonnye resheniya uravneniya Kortevega–de Friza”, TMF, 23:1 (1975), 51–68 | MR

[10] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | MR | Zbl

[11] Krichever I. M., “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, 32:6 (1977), 183–208 | MR | Zbl

[12] Dubrovin B. A., “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 11–80 | MR | Zbl

[13] Belokolos E. D., Bobenko A. I., Enol'skii V. Z., Its A. R., Matveev V. B., Algebro-geometrical approach to nonlinear evolution equations, Springer Ser. Nonlinear Dynamics, Springer, Berlin–Heidelberg–New York, 1994, 320 pp.

[14] Smirnov A. O., “Dvukhzonnye ellipticheskie resheniya uravneniya Bussineska”, Matem. sb., 190:5 (1999), 139–157 | MR | Zbl

[15] Belokolos E. D., Bobenko A. I., Matveev V. B., Enolskii V. Z., “Algebro-geometricheskie printsipy superpozitsii konechnozonnykh reshenii integriruemykh nelineinykh uravnenii”, UMN, 41:2 (1986), 3–42 | MR | Zbl

[16] Smirnov A. O., “Finite-gap elliptic solutions of the KdV equation”, Acta Appl. Math., 36:1-2 (1994), 125–166 | DOI | MR | Zbl

[17] Akhiezer N. I., Elementy teorii ellipticheskikh funktsii., Gostekhizdat, M., 1948, 291 pp.

[18] Amosenok E. G., Smirnov A. O., “Two-gap 2-elliptic solution of Boussinesq equation”, Lett. Math. Phys., 96:1-3 (2011), 157–168 | DOI | MR | Zbl

[19] Fay J., Theta functions on Riemann surfaces, Lect. Notes in Math., 352, Springer, Berlin–New York, 1973, 137 pp. | MR | Zbl

[20] Baker H. F., Abel's theorem and the allied theory including the theory of the theta functions, Cambridge Univ. Press, Cambridge, 1897, 684 pp. | MR

[21] Krazer A., Lehrbuch der Thetafunktionen., Teubner, Leipzig, 1903, 509 pp. | Zbl

[22] Smirnov A. O., “Konechnozonnye resheniya abelevoi tsepochki Tody roda 4 i 5 v ellipticheskikh funktsiyakh”, TMF, 78:1 (1989), 11–21 | MR

[23] Smirnov A. O., “Dvukhzonnye ellipticheskie resheniya integriruemykh nelineinykh uravnenii”, Matem. zametki, 58:1 (1995), 86–97 | MR | Zbl