Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2011_7_2_a3, author = {A. O. Smirnov and G. M. Golovachev and E. G. Amosenok}, title = {Two-gap 3-elliptic solutions of the {Boussinesq} and the {Korteweg--de~Vries} equations}, journal = {Russian journal of nonlinear dynamics}, pages = {239--256}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2011_7_2_a3/} }
TY - JOUR AU - A. O. Smirnov AU - G. M. Golovachev AU - E. G. Amosenok TI - Two-gap 3-elliptic solutions of the Boussinesq and the Korteweg--de~Vries equations JO - Russian journal of nonlinear dynamics PY - 2011 SP - 239 EP - 256 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2011_7_2_a3/ LA - ru ID - ND_2011_7_2_a3 ER -
%0 Journal Article %A A. O. Smirnov %A G. M. Golovachev %A E. G. Amosenok %T Two-gap 3-elliptic solutions of the Boussinesq and the Korteweg--de~Vries equations %J Russian journal of nonlinear dynamics %D 2011 %P 239-256 %V 7 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2011_7_2_a3/ %G ru %F ND_2011_7_2_a3
A. O. Smirnov; G. M. Golovachev; E. G. Amosenok. Two-gap 3-elliptic solutions of the Boussinesq and the Korteweg--de~Vries equations. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 2, pp. 239-256. http://geodesic.mathdoc.fr/item/ND_2011_7_2_a3/
[1] Gardner C., Green I., Kruskal M., Miura R., “A method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19:19 (1967), 1095–1098 | DOI
[2] Lax P. D., “Integrals of non-linear equations of evolution and solitary waves”, Comm. Pure Appl. Math., 21 (1968), 467–490 | DOI | MR | Zbl
[3] Gardner C., “Korteweg–de Vries equation and generalization: IV. The Korteweg–de Vries equation as a Hamiltonian system”, J. Math. Phys., 12 (1971), 1548–1551 | DOI | MR | Zbl
[4] Zakharov V. E., Faddeev L. D., “Uravnenie Kortevega–de Friza — vpolne integriruemaya gamiltonova sistema”, Funkts. analiz i ego pril., 5:4 (1971), 18–27 | MR | Zbl
[5] Zakharov V. E., Shabat A. B., “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–134
[6] Novikov S. P., “Periodicheskaya zadacha dlya uravneniya Kortevega–de Friza”, Funkts. analiz i ego pril., 8:3 (1974), 54–66 | MR | Zbl
[7] Lax P. D., “Periodic solutions of the KdV equations”, Comm. Pure Appl. Math., 28:1 (1975), 141–188 | DOI | MR | Zbl
[8] Dubrovin B. A., Novikov S. P., “Periodicheskaya zadacha dlya uravnenii Kortevega–de Friza i Shturma–Liuvillya: ikh svyaz s algebraicheskoi geometriei”, Dokl. AN SSSR, 219:3 (1974), 19–22 | MR | Zbl
[9] Its A. R., Matveev V. B., “Operatory Shrëdingera s konechnozonnym spektrom i $N$-solitonnye resheniya uravneniya Kortevega–de Friza”, TMF, 23:1 (1975), 51–68 | MR
[10] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | MR | Zbl
[11] Krichever I. M., “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, 32:6 (1977), 183–208 | MR | Zbl
[12] Dubrovin B. A., “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 11–80 | MR | Zbl
[13] Belokolos E. D., Bobenko A. I., Enol'skii V. Z., Its A. R., Matveev V. B., Algebro-geometrical approach to nonlinear evolution equations, Springer Ser. Nonlinear Dynamics, Springer, Berlin–Heidelberg–New York, 1994, 320 pp.
[14] Smirnov A. O., “Dvukhzonnye ellipticheskie resheniya uravneniya Bussineska”, Matem. sb., 190:5 (1999), 139–157 | MR | Zbl
[15] Belokolos E. D., Bobenko A. I., Matveev V. B., Enolskii V. Z., “Algebro-geometricheskie printsipy superpozitsii konechnozonnykh reshenii integriruemykh nelineinykh uravnenii”, UMN, 41:2 (1986), 3–42 | MR | Zbl
[16] Smirnov A. O., “Finite-gap elliptic solutions of the KdV equation”, Acta Appl. Math., 36:1-2 (1994), 125–166 | DOI | MR | Zbl
[17] Akhiezer N. I., Elementy teorii ellipticheskikh funktsii., Gostekhizdat, M., 1948, 291 pp.
[18] Amosenok E. G., Smirnov A. O., “Two-gap 2-elliptic solution of Boussinesq equation”, Lett. Math. Phys., 96:1-3 (2011), 157–168 | DOI | MR | Zbl
[19] Fay J., Theta functions on Riemann surfaces, Lect. Notes in Math., 352, Springer, Berlin–New York, 1973, 137 pp. | MR | Zbl
[20] Baker H. F., Abel's theorem and the allied theory including the theory of the theta functions, Cambridge Univ. Press, Cambridge, 1897, 684 pp. | MR
[21] Krazer A., Lehrbuch der Thetafunktionen., Teubner, Leipzig, 1903, 509 pp. | Zbl
[22] Smirnov A. O., “Konechnozonnye resheniya abelevoi tsepochki Tody roda 4 i 5 v ellipticheskikh funktsiyakh”, TMF, 78:1 (1989), 11–21 | MR
[23] Smirnov A. O., “Dvukhzonnye ellipticheskie resheniya integriruemykh nelineinykh uravnenii”, Matem. zametki, 58:1 (1995), 86–97 | MR | Zbl