On the dimension of the set of solutions for nonlocal nonlinear wave equation
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 2, pp. 209-226.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonlocal generalizations of nonlinear wave equation arise in numerous physical applications. It is known that switching from local to nonlocal description may result in new features of the problem and new types of solutions. In this paper the author analyses the dimension of the set of travelling wave solutions for а nonlocal nonlinear wave equation. The nonlocality is represented by the convolution operator which replaces the second derivative in the dispersion term. The results have been obtained for the case where the nonlinearity is bounded, and the kernel of the convolution operator is represented by a sum of exponents with weights (so-called E-type kernel). In the simplest particular case, (so-called Kac–Baker kernel) it is shown that the solutions of this equation form a 3-parametric set (assuming the equivalence of the solutions which differ by a shift with respect to the independent variable). Then it is shown that in the case of the general E-type kernel the 3-parametric set of solutions also exists, generically, under some additional restrictions. The word «generically» in this case means some transversality condition for intersection of some manifolds in a properly defined phase space.
Keywords: nonlocal nonlinear wave equation.
@article{ND_2011_7_2_a1,
     author = {G. L. Alfimov},
     title = {On the dimension of the set of solutions for nonlocal nonlinear wave equation},
     journal = {Russian journal of nonlinear dynamics},
     pages = {209--226},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_2_a1/}
}
TY  - JOUR
AU  - G. L. Alfimov
TI  - On the dimension of the set of solutions for nonlocal nonlinear wave equation
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 209
EP  - 226
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_2_a1/
LA  - ru
ID  - ND_2011_7_2_a1
ER  - 
%0 Journal Article
%A G. L. Alfimov
%T On the dimension of the set of solutions for nonlocal nonlinear wave equation
%J Russian journal of nonlinear dynamics
%D 2011
%P 209-226
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_2_a1/
%G ru
%F ND_2011_7_2_a1
G. L. Alfimov. On the dimension of the set of solutions for nonlocal nonlinear wave equation. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 2, pp. 209-226. http://geodesic.mathdoc.fr/item/ND_2011_7_2_a1/

[1] Dodd R., Eilbek Dzh., Gibbon Dzh., Morris Kh., Solitony i nelineinye volnovye uravneniya., Mir, M., 1988, 694 pp.

[2] Ivanchenko Yu. M., Soboleva T. K., “Dzhozefsonovskii perekhod s nelokalnym vzaimodeistviem”, Pisma v ZhETF, 51:2 (1990), 100–102

[3] Ivanchenko Yu. M., Soboleva T. K., “Nonlocal interaction in Josephson junction”, Phys. Lett. A, 147:1 (1990), 65–69 | DOI

[4] Aliev Yu. M., Silin V. P., Uryupin S. A., “K teorii nelineinykh dispergiruyuschikh voln v dzhozefsonovskikh kontaktakh”, SFKhT, 5:2 (1992), 228–235

[5] Gurevich A., “Nonlocal Josephson electrodynamics and pinning in superconductors”, Phys. Rev. B, 46:5 (1992), 3187–3190 | DOI

[6] Gurevich A., “Nonlinear viscous motion of vortices in Josephson contacts”, Phys. Rev. B, 48:17 (1993), 12857–12865 | DOI

[7] Mints R. G., “Nonlocal Josephson electrodynamics”, J. Low. Temp. Phys., 106:3-4 (1997), 183–192 | DOI

[8] Abdumalikov A. A. (Jr.), Alfimov G. L., Malishevskii A. S., “Nonlocal electrodynamics of Josephson vortices in superconducting circuits”, Supercond. Sci. Technol., 22 (2009), 053001, 48 pp. | DOI

[9] Savel'ev S., Yampol'skii V., Rakhmanov A., Nori F., “Terahertz Josephson plasma waves in layered superconductors: Spectrum, generation, nonlinear and quantum phenomena”, Rep. Prog. Phys., 73 (2010), 026501, 49 pp. | DOI

[10] Kiselev V. V., Tankeev A. P., “Dlinnovolnovye slabonelineinye spinovye vozbuzhdeniya v tonkikh ferromagnitnykh plenkakh”, FMM, 82:3 (1996), 32–45

[11] Pokrovsky V. L., Virosztek A., “Long-range interactions in commensurate-incommensurate phase transition”, J. Phys. C, 16 (1983), 4513–4525 | DOI

[12] Braun O. M., Kivshar Yu. S., Zelenskaya I. I., “Kinks in the Frenkel–Kontorova model with long-range interparticle interactions”, Phys. Rev. B, 41 (1990), 7118–7138 | DOI

[13] Woafo P., Kofane T. C., Bokosah A. S., “Discreteness effects in a $phi^4$ chain with long-range interactions”, J. Phys.: Condens. Matter, 3 (1991), 2279–2286 | DOI

[14] Woafo P., Kofane T. C., Bokosah A. S., “Statistical mechanics of the continuum and discrete $phi^4$ system with long-range interaction potential: The soliton dilute-gas phenomenology”, J. Phys.: Condens. Matter, 4 (1992), 3389–3404 | DOI

[15] Woafo P., Kenne J. R., Kofane T. C., “Topological solitons in a sine-Gordon system with Kac–Baker interactions”, J. Phys.: Condens. Matter, 5 (1993), L123–L128 | DOI

[16] Kenne J. R., Woafo P., Kofane T. C., “Dynamics and thermodynamics of the sine-Gordon system with long-range interaction potential”, J. Phys.: Condens. Matter, 6 (1994), 4277–4288 | DOI

[17] Mingaleev S. F., Gaididei Yu. B., Majernikova E., Shpyrko S., “Kinks in the discrete sine-Gordon model with Kac–Baker long-range interactions”, Phys. Rev. E, 61 (2000), 4454–4461 | DOI

[18] Alfimov G. L., Eleonsky V. M., Kulagin N. E., Mitskevich N. V., “Dynamics of topological solitons in models with nonlocal interactions”, Chaos, 3 (1993), 405–415 | DOI | MR

[19] Aliev Yu. M., Ovchinnikov K. N., Silin V. P., Uryupin S. A., “Nelokalnaya dzhozefsonovskaya elektrodinamika sloistykh struktur”, ZhETF, 107:3 (1995), 972–988

[20] Alfimov G. L., Eleonsky V. M., Lerman L. M., “Solitary wave solutions of nonlocal sine-Gordon equations”, Chaos, 8:1 (1998), 257–271 | DOI | MR | Zbl

[21] Palmer K. J., “A generalization of Hartman's linearization theorem”, J. Math. Anal. Appl., 41 (1973), 753–758 | DOI | MR | Zbl

[22] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989, 655 pp.