Statistical irreversibility of the Kac reversible circular model
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 1, pp. 101-117

Voir la notice de l'article provenant de la source Math-Net.Ru

The Kac circular model is a discrete dynamical system which has the property of recurrence and reversibility. Within the framework of this model M. Kac formulated necessary conditions for irreversibility over “short” time intervals to take place and demonstrated Boltzmann's most important exploration methods and ideas, outlining their advantages and limitations. We study the circular model within the realm of the theory of Gibbs ensembles and offer a new approach to a rigorous proof of the “zeroth” law of thermodynamics basing on the analysis of weak convergence of probability distributions.
Keywords: reversibility; stochastic equilibrium; weak convergence.
@article{ND_2011_7_1_a4,
     author = {V. V. Kozlov},
     title = {Statistical irreversibility of the {Kac} reversible circular model},
     journal = {Russian journal of nonlinear dynamics},
     pages = {101--117},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_1_a4/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - Statistical irreversibility of the Kac reversible circular model
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 101
EP  - 117
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_1_a4/
LA  - ru
ID  - ND_2011_7_1_a4
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T Statistical irreversibility of the Kac reversible circular model
%J Russian journal of nonlinear dynamics
%D 2011
%P 101-117
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_1_a4/
%G ru
%F ND_2011_7_1_a4
V. V. Kozlov. Statistical irreversibility of the Kac reversible circular model. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 1, pp. 101-117. http://geodesic.mathdoc.fr/item/ND_2011_7_1_a4/