Statistical irreversibility of the Kac reversible circular model
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 1, pp. 101-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Kac circular model is a discrete dynamical system which has the property of recurrence and reversibility. Within the framework of this model M. Kac formulated necessary conditions for irreversibility over “short” time intervals to take place and demonstrated Boltzmann's most important exploration methods and ideas, outlining their advantages and limitations. We study the circular model within the realm of the theory of Gibbs ensembles and offer a new approach to a rigorous proof of the “zeroth” law of thermodynamics basing on the analysis of weak convergence of probability distributions.
Keywords: reversibility; stochastic equilibrium; weak convergence.
@article{ND_2011_7_1_a4,
     author = {V. V. Kozlov},
     title = {Statistical irreversibility of the {Kac} reversible circular model},
     journal = {Russian journal of nonlinear dynamics},
     pages = {101--117},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_1_a4/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - Statistical irreversibility of the Kac reversible circular model
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 101
EP  - 117
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_1_a4/
LA  - ru
ID  - ND_2011_7_1_a4
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T Statistical irreversibility of the Kac reversible circular model
%J Russian journal of nonlinear dynamics
%D 2011
%P 101-117
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_1_a4/
%G ru
%F ND_2011_7_1_a4
V. V. Kozlov. Statistical irreversibility of the Kac reversible circular model. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 1, pp. 101-117. http://geodesic.mathdoc.fr/item/ND_2011_7_1_a4/

[1] Erenfest P., Erenfest T., “Zamechanie o teorii vozrastaniya entropii v «Statisticheskoi mekhanike» U. Gibbsa”: A. Puankare, T. i P. Erenfesty, Dzh. fon Neiman, Raboty po statisticheskoi mekhanike, C dopolneniyami i pod red. V. V. Kozlova i O. G. Smolyanova, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2011 (to appear); Ehrenfest P., Ehrenfest T., “Bemerkung zur Theorie der Entropiezunahme in der «Statistischen Mechanik» von W. Gibbs”, Sitzungsberichte Akad. Wiss. Wien, 115:IIa (1906), 89–98

[2] Erenfest P., Erenfest T., “O dvukh izvestnykh vozrazheniyakh protiv $H$-teoremy Boltsmana”: A. Puankare, T. i P. Erenfesty, Dzh. fon Neiman, Raboty po statisticheskoi mekhanike, C dopolneniyami i pod red. V. V. Kozlova i O. G. Smolyanova, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2011 (to appear); Ehrenfest P., Ehrenfest T., “Über zwei bekannte Eniwände gegen das Boltzmannsche $H$-Theorem”, Phys. Zschr., 8:9, 311–314

[3] Markov A. A., “Obobschenie zadachi o posledovatelnom obmene sharov”, Izv. Akad. nauk, S.-Pb., VI ser., 12:5 (1918), 261–266

[4] Kac M., Probability and related topics in physical sciences, Intersci. Publ., New York–London, 1958, 266 pp.

[5] Kats M., Neskolko veroyatnostnykh zadach fiziki i matematiki, Nauka, M., 1967, 176 pp.

[6] Kozlov V. V., Teplovoe ravnovesie po Gibbsu i Puankare, Inst. kompyutern. issled., M.–Izhevsk, 2002, 320 pp.

[7] Kozlov V. V., Ansambli Gibbsa i neravnovesnaya statisticheskaya mekhanika, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2008, 208 pp.

[8] Poincaré H., “Réfflexions sur la théorie cinétique des gaz”, J. Phys. théoret. et appl., 4-e sér., 5 (1906), 369–403

[9] Gibbs W., Elementary principles in statistical mechanics, developed with especial reference to the rational foundation of thermodynamics, Schribner, New York, 1902, 159 pp.

[10] Hardy G. H., Divergent series, Oxford Univ. Press, Oxford, 1949, 396 pp.

[11] Prigozhin I., Stengers I., Poryadok iz khaosa: Novyi dialog cheloveka s prirodoi, Progress, M., 1986, 432 pp.

[12] Kozlov V. V., Treschev D. V., “Tonkaya i grubaya entropiya v zadachakh statisticheskoi mekhaniki”, Teoret. i matem. fizika, 151:1 (2007), 120–137

[13] Bogolyubov N. N., Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M.–L., 1946, 136 pp.

[14] Uhlenbeck G. E., Ford G., Lectures in statistical mechanics, AMS, Providence, RI, 1963, 181 W. pp.