On the Lagrangian transport near oscillating vortex in running flow
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 1, pp. 75-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

Passive particles advection is considered in the vicinity of hyperbolic stationary point of the separatrix destroyed by insteady perturbations. For different frequencies of the disturbancies the trajectories of advected particles are investigated analytically and numerically. The approximate criteria of capture and release of particles are obtained. The results are linked with known law for the stochastic layer width near separatrix. The obtained criteria are connected with analytical Melnikovs integral.
Keywords: chaotic dynamics; vortex structures; stochastic layer.
@article{ND_2011_7_1_a3,
     author = {A. E. Gledzer},
     title = {On the {Lagrangian} transport near oscillating vortex in running flow},
     journal = {Russian journal of nonlinear dynamics},
     pages = {75--100},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_1_a3/}
}
TY  - JOUR
AU  - A. E. Gledzer
TI  - On the Lagrangian transport near oscillating vortex in running flow
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 75
EP  - 100
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_1_a3/
LA  - ru
ID  - ND_2011_7_1_a3
ER  - 
%0 Journal Article
%A A. E. Gledzer
%T On the Lagrangian transport near oscillating vortex in running flow
%J Russian journal of nonlinear dynamics
%D 2011
%P 75-100
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_1_a3/
%G ru
%F ND_2011_7_1_a3
A. E. Gledzer. On the Lagrangian transport near oscillating vortex in running flow. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 1, pp. 75-100. http://geodesic.mathdoc.fr/item/ND_2011_7_1_a3/

[1] Puankare A., Izbrannye trudy, v. 1, 2, Nauka, M., 1972, 773 pp.; 1001 с.

[2] Melnikov V. K., “O povedenii traektorii sistemy blizkoi k avtonomnoi gamiltonovoi sisteme”, Dokl. AN SSSR, 142:3 (1962), 542–545

[3] Melnikov V. K., “Kachestvennoe opisanie silnogo rezonansa v nelineinoi sisteme”, Dokl. AN SSSR, 148:6 (1963), 1257–1260

[4] Kadtke J. B., Novikov T. F., “Chaotic capture of vortices by a moving body: I. The single point vortex case”, Chaos, 3:4 (1993), 543–553

[5] Luithardt H. H., Kadtke J. B., Pedrizzetti G., “Chaotic capture of vortices by a moving body: II. Bound pair model”, Chaos, 4:4 (1994), 681–691

[6] Weiss J. B., “Hamiltonian maps and transport in structured fluids”, Phys. D, 76 (1994), 230–238

[7] Wiggins S., Chaotic transport in dynamical systems, Springer, New York, 1992, 301 pp.

[8] Rom-Kedar V., Leonard A., Wiggins S., “An analytical study of transport, mixing, and chaos in an unsteady vortical flow”, J. Fluid Mech., 214 (1990), 347–394

[9] Koshel K. V., Prants S. V., Khaoticheskaya advektsiya v okeane, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2008, 360 pp.

[10] Lozier M. S., Pratt L. J., Rogerson A. M., Miller P. D., “Exchange geometry revealed by float trajectories in the Gulf Stream”, J. Phys. Oceanogr., 27 (1997), 2327–2341

[11] Rogerson A. M., Miller P. D., Pratt L. J., Jones C. K. R. T., “Lagrangian motion and fluid exchange in a barotropic meandering jet”, J. Phys. Oceanogr., 29 (1999), 2635–2655

[12] Coulliette C., Wiggins S., “Intergyre transport in a wind-driven, quasigeostrophic double gyre: An application of lobe dynamics”, Nonlinear Process. Geophys., 8 (2001), 69–94

[13] Poje A. C., Haller G., “Geometry of cross-stream mixing in a double-gyre ocean model”, J. Phys. Oceanogr., 29 (1999), 1649–1665

[14] Del-Castillo-Negrete D., Morrison P. J., “Chaotic transport by Rossby waves in shear flows”, Phys. Fluids A, 5:4 (1993), 948–965

[15] Del-Castillo-Negrete D., “Asymmetric transport and non-Gaussian statistics of passive scalars in vortices in shear”, Phys. Fluids, 10:3 (1998), 576–594

[16] Kozlov V. F., Koshel K. V., “Ob odnoi modeli khaoticheskogo perenosa v barotropnom fonovom techenii”, Izv. RAN, FAO, 36:1 (2000), 119–128

[17] Kozlov V. F., Koshel K. V., “Nekotorye osobennosti khaotizatsii pulsiruyuschego barotropnogo potoka nad osesimmetrichnoi podvodnoi vozvyshennostyu”, Izv. RAN, FAO, 37:3 (2001), 378–389

[18] Kozlov V. F., Koshel K. V., Stepanov D. V., “O vliyanii granitsy na khaoticheskuyu advektsiyu v barotropnykh kvazigeostroficheskikh modelyakh fonovykh techenii”, Dalnevost. matem. zhurn., 2:2 (2001), 89–98

[19] Kozlov V. F., Koshel K. V., Stepanov D. V., “Vliyanie granitsy na khaoticheskuyu advektsiyu v prosteishei modeli topograficheskogo vikhrya”, Izv. RAN, FAO, 41:2 (2005), 242–252

[20] Ryzhov E., Koshel K., Stepanov D., “Background current concept and chaotic advection in an oceanic vortex flow”, Theoret. Comput. Fluid Dyn., 24 (2010), 59–64

[21] Gledzer A. E., “Zakhvat i vysvobozhdenie massy v vikhrevykh strukturakh okeana”, Izv. RAN, FAO, 35:6 (1999), 838–845

[22] Gledzer A. E., Dinamika konechnomernykh geofizicheskikh techenii i vliyanie razlichnykh mekhanizmov vyazkosti, Dis. na soiskanie uch. st. kand. f.-m. n., IFA RAN im. A. M. Obukhova, Moskva, 2004

[23] Gledzer A. E., “Dinamika lagranzhevykh chastits okolo koleblyuschegosya vikhrya nad ploskoi poverkhnostyu”, Mezhdunar. konf. «Potoki i struktury v zhidkostyakh: Fizika geosfer» (Moskva, IPMekh RAN, 23–27.06.2009), Sb. tezisov: Ch. 1, Moskva, 2009, 67–68

[24] Miln-Tomson L. M., Teoreticheskaya gidrodinamika, Mir, M., 1964, 660 pp.

[25] Maksimenko N. A., Orlov O. I., “Integralnye kharakteristiki yadra kvazistatsionarnogo «gaussova» vikhrya v odnorodnom ili sdvigovom potokakh”, Okeanologiya, 31:1 (1991), 34–41

[26] Kuznetsov S. P., Dinamicheskii khaos, Fizmatlit, M., 2001, 296 pp.