Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2011_7_1_a2, author = {V. A. Khudobakhshov and A. V. Tsiganov}, title = {Integrable systems on the sphere associated with genus three algebraic curves}, journal = {Russian journal of nonlinear dynamics}, pages = {53--74}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2011_7_1_a2/} }
TY - JOUR AU - V. A. Khudobakhshov AU - A. V. Tsiganov TI - Integrable systems on the sphere associated with genus three algebraic curves JO - Russian journal of nonlinear dynamics PY - 2011 SP - 53 EP - 74 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2011_7_1_a2/ LA - ru ID - ND_2011_7_1_a2 ER -
V. A. Khudobakhshov; A. V. Tsiganov. Integrable systems on the sphere associated with genus three algebraic curves. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 1, pp. 53-74. http://geodesic.mathdoc.fr/item/ND_2011_7_1_a2/
[1] Belokolos E. D., Bobenko A. I., Enolskii V. Z., Its A. R., Matveev V. B., Algebro-geometrical approach to nonlinear integrable equations, Springer, Berlin, 1994, 337 pp.
[2] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, IKI, M.–Izhevsk, 2005, 576 pp.
[3] Borisov A. V., Mamaev I. S., Matematicheskie metody dinamiki vikhrevykh struktur, IKI, M.–Izhevsk, 2005, 368 pp.
[4] Sistema Klebsha. Razdelenie peremennykh, yavnoe integrirovanie?, eds. A. V. Borisov, A. V. Tsyganov, RKhD, M.–Izhevsk, 2009, 288 pp.
[5] Buchstaber V. M., Enolskii V. Z., Leykin D. V., “Kleinian functions, hyperelliptic Jacobians and applications”, Rev. Math. Math. Phys., 10:2 (1997), 3–120
[6] Chaplygin S. A., “Novoe chastnoe reshenie zadachi o dvizhenii tverdogo tela v zhidkosti”, Tr. Otd-ya fiz. nauk Ob-va lyubitelei estestvoznaniya, 11:2 (1903), 7–10; Чаплыгин С. А., “Новое частное решение задачи о движении твердого тела в жидкости”, Собр. соч., В 4-х тт., т. 1, Теоретическая механика. Математика, ГИТТЛ, М.–Л., 1948, 337–346
[7] Dullin H. R., Matveev V. S., “A new integrable system on the sphere”, Math. Res. Lett., 11 (2004), 715–722
[8] Fedorov Yu., “Classical integrable systems and billiards related to generalized Jacobians”, Acta Appl. Math., 55:3 (1999), 251–301
[9] Goryachev D. N., “Novye sluchai dvizheniya tverdogo tela vokrug nepodvizhnoi tochki”, Varshavskie Universitetskie Izvestiya, 3 (1915), 1–11
[10] Goryachev D. N., “Novye sluchai integriruemosti dinamicheskikh uravnenii Eilera”, Varshavskie Universitetskie Izvestiya, 3 (1916), 1–13
[11] Komarov I. V., Sokolov V. V., Tsiganov A. V., “Poisson maps and integrable deformations of Kowalevski top”, J. Phys. A, 36 (2003), 8035–8048
[12] Ktter F., “Sur le cas trait par Mme Kowalevski de rotation d'un corps solide pesant autour d'un point fixe”, Acta Math., 17:1-2 (1893), 209–263
[13] Kowalevski S., “Sur le problme de la rotation d'un corps solide autour d'un point fixe”, Acta Math., 12 (1889), 177–232
[14] Kuznetsov V. B., “Simultaneous separation for the Kowalevski and Goryachev–Chaplygin gyrostats”, J. Phys. A, 35 (2002), 6419–6430
[15] Tsiganov A. V., “On the Kowalevski–Goryachev–Chaplygin gyrostat”, J. Phys. A, 35:26 (2002), L309–L318
[16] Tsiganov A. V., “On the Steklov–Lyapunov case of the rigid body motion”, Regul. Chaotic Dyn., 9:2 (2004), 77–89
[17] Tsiganov A. V., “On a family of integrable systems on $S2$ with a cubic integral ofmotion”, J. Phys. A, 38 (2005), 921–927
[18] Tsiganov A. V., “On the two different bi-Hamiltonian structures for the Toda lattice”, J. Phys. A, 40 (2007), 6395–6406
[19] Tsiganov A. V., “On the generalized Chaplygin system”, Zapiski nauchnykh seminarov POMI RAN, 374, 2010, 250–267
[20] Tsiganov A. V., “New variables of separation for particular case of the Kowalevski top”, Regul. Chaotic Dyn., 15:6 (2010), 657–667
[21] Tsyganov A. V., “O novom razdelenii peremennykh dlya chastnogo sluchaya volchka Kovalevskoi”, Nelineinaya dinamika, 6:3 (2010), 639–652
[22] Tsiganov A. V., On bi-integrable natural Hamiltonian systems on the Riemannian manifolds, 1006, accepted to Journal of Nonlinear Mathematical Physics, arXiv: 1006.3914
[23] Tsiganov A. V., “On natural Poisson bivectors on the sphere”, J. Phys. A, 44 (2011), 105203, 15 pp.
[24] Tsiganov A. V., New variables of separation for the Steklov–Lyapunov system, 2011, arXiv: 1101.4345v1
[25] Vershilov A. V., Tsiganov A. V., “On bi-Hamiltonian geometry of some integrable systems on the sphere with cubic integral of motion”, J. Phys. A, 42 (2009), 105203, 12 pp.
[26] Vershilov A. V., Tsiganov A. V., On one integrable system with a cubic first integral, 2011, arXiv: 1103.1444v1
[27] Weierstrass K., Mathematische Werke, v. 1, Mayer Müller, Berlin, 1894, 356 pp.
[28] Rubanovskii V. N., “Integriruemye sluchai v zadache o dvizhenii tyazhelogo tverdogo tela v zhidkosti”, Dokl. AN SSSR, 180 (1968), 556–559
[29] Yehia H. M., Elmandouh A. A., “New integrable systems with a quartic integral and new generalizations of Kovalevskaya's and Goriatchev's cases”, Regul. Chaotic Dyn., 13:1 (2008), 56–69