Integrable systems on the sphere associated with genus three algebraic curves
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 1, pp. 53-74
Voir la notice de l'article provenant de la source Math-Net.Ru
New variables of separation for few integrable systems on the two-dimensional sphere with higher order integrals of motion are considered in detail.We explicitly describe canonical transformations of initial physical variables to the variables of separation and vice versa, calculate the corresponding quadratures and discuss some possible integrable deformations of initial systems.
Keywords:
integrable systems; separation of variables; Abel equations.
@article{ND_2011_7_1_a2,
author = {V. A. Khudobakhshov and A. V. Tsiganov},
title = {Integrable systems on the sphere associated with genus three algebraic curves},
journal = {Russian journal of nonlinear dynamics},
pages = {53--74},
publisher = {mathdoc},
volume = {7},
number = {1},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ND_2011_7_1_a2/}
}
TY - JOUR AU - V. A. Khudobakhshov AU - A. V. Tsiganov TI - Integrable systems on the sphere associated with genus three algebraic curves JO - Russian journal of nonlinear dynamics PY - 2011 SP - 53 EP - 74 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2011_7_1_a2/ LA - ru ID - ND_2011_7_1_a2 ER -
V. A. Khudobakhshov; A. V. Tsiganov. Integrable systems on the sphere associated with genus three algebraic curves. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 1, pp. 53-74. http://geodesic.mathdoc.fr/item/ND_2011_7_1_a2/