Integrable systems on the sphere associated with genus three algebraic curves
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 1, pp. 53-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

New variables of separation for few integrable systems on the two-dimensional sphere with higher order integrals of motion are considered in detail.We explicitly describe canonical transformations of initial physical variables to the variables of separation and vice versa, calculate the corresponding quadratures and discuss some possible integrable deformations of initial systems.
Keywords: integrable systems; separation of variables; Abel equations.
@article{ND_2011_7_1_a2,
     author = {V. A. Khudobakhshov and A. V. Tsiganov},
     title = {Integrable systems on the sphere associated with genus three algebraic curves},
     journal = {Russian journal of nonlinear dynamics},
     pages = {53--74},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_1_a2/}
}
TY  - JOUR
AU  - V. A. Khudobakhshov
AU  - A. V. Tsiganov
TI  - Integrable systems on the sphere associated with genus three algebraic curves
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 53
EP  - 74
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_1_a2/
LA  - ru
ID  - ND_2011_7_1_a2
ER  - 
%0 Journal Article
%A V. A. Khudobakhshov
%A A. V. Tsiganov
%T Integrable systems on the sphere associated with genus three algebraic curves
%J Russian journal of nonlinear dynamics
%D 2011
%P 53-74
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_1_a2/
%G ru
%F ND_2011_7_1_a2
V. A. Khudobakhshov; A. V. Tsiganov. Integrable systems on the sphere associated with genus three algebraic curves. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 1, pp. 53-74. http://geodesic.mathdoc.fr/item/ND_2011_7_1_a2/

[1] Belokolos E. D., Bobenko A. I., Enolskii V. Z., Its A. R., Matveev V. B., Algebro-geometrical approach to nonlinear integrable equations, Springer, Berlin, 1994, 337 pp.

[2] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, IKI, M.–Izhevsk, 2005, 576 pp.

[3] Borisov A. V., Mamaev I. S., Matematicheskie metody dinamiki vikhrevykh struktur, IKI, M.–Izhevsk, 2005, 368 pp.

[4] Sistema Klebsha. Razdelenie peremennykh, yavnoe integrirovanie?, eds. A. V. Borisov, A. V. Tsyganov, RKhD, M.–Izhevsk, 2009, 288 pp.

[5] Buchstaber V. M., Enolskii V. Z., Leykin D. V., “Kleinian functions, hyperelliptic Jacobians and applications”, Rev. Math. Math. Phys., 10:2 (1997), 3–120

[6] Chaplygin S. A., “Novoe chastnoe reshenie zadachi o dvizhenii tverdogo tela v zhidkosti”, Tr. Otd-ya fiz. nauk Ob-va lyubitelei estestvoznaniya, 11:2 (1903), 7–10; Чаплыгин С. А., “Новое частное решение задачи о движении твердого тела в жидкости”, Собр. соч., В 4-х тт., т. 1, Теоретическая механика. Математика, ГИТТЛ, М.–Л., 1948, 337–346

[7] Dullin H. R., Matveev V. S., “A new integrable system on the sphere”, Math. Res. Lett., 11 (2004), 715–722

[8] Fedorov Yu., “Classical integrable systems and billiards related to generalized Jacobians”, Acta Appl. Math., 55:3 (1999), 251–301

[9] Goryachev D. N., “Novye sluchai dvizheniya tverdogo tela vokrug nepodvizhnoi tochki”, Varshavskie Universitetskie Izvestiya, 3 (1915), 1–11

[10] Goryachev D. N., “Novye sluchai integriruemosti dinamicheskikh uravnenii Eilera”, Varshavskie Universitetskie Izvestiya, 3 (1916), 1–13

[11] Komarov I. V., Sokolov V. V., Tsiganov A. V., “Poisson maps and integrable deformations of Kowalevski top”, J. Phys. A, 36 (2003), 8035–8048

[12] Ktter F., “Sur le cas trait par Mme Kowalevski de rotation d'un corps solide pesant autour d'un point fixe”, Acta Math., 17:1-2 (1893), 209–263

[13] Kowalevski S., “Sur le problme de la rotation d'un corps solide autour d'un point fixe”, Acta Math., 12 (1889), 177–232

[14] Kuznetsov V. B., “Simultaneous separation for the Kowalevski and Goryachev–Chaplygin gyrostats”, J. Phys. A, 35 (2002), 6419–6430

[15] Tsiganov A. V., “On the Kowalevski–Goryachev–Chaplygin gyrostat”, J. Phys. A, 35:26 (2002), L309–L318

[16] Tsiganov A. V., “On the Steklov–Lyapunov case of the rigid body motion”, Regul. Chaotic Dyn., 9:2 (2004), 77–89

[17] Tsiganov A. V., “On a family of integrable systems on $S2$ with a cubic integral ofmotion”, J. Phys. A, 38 (2005), 921–927

[18] Tsiganov A. V., “On the two different bi-Hamiltonian structures for the Toda lattice”, J. Phys. A, 40 (2007), 6395–6406

[19] Tsiganov A. V., “On the generalized Chaplygin system”, Zapiski nauchnykh seminarov POMI RAN, 374, 2010, 250–267

[20] Tsiganov A. V., “New variables of separation for particular case of the Kowalevski top”, Regul. Chaotic Dyn., 15:6 (2010), 657–667

[21] Tsyganov A. V., “O novom razdelenii peremennykh dlya chastnogo sluchaya volchka Kovalevskoi”, Nelineinaya dinamika, 6:3 (2010), 639–652

[22] Tsiganov A. V., On bi-integrable natural Hamiltonian systems on the Riemannian manifolds, 1006, accepted to Journal of Nonlinear Mathematical Physics, arXiv: 1006.3914

[23] Tsiganov A. V., “On natural Poisson bivectors on the sphere”, J. Phys. A, 44 (2011), 105203, 15 pp.

[24] Tsiganov A. V., New variables of separation for the Steklov–Lyapunov system, 2011, arXiv: 1101.4345v1

[25] Vershilov A. V., Tsiganov A. V., “On bi-Hamiltonian geometry of some integrable systems on the sphere with cubic integral of motion”, J. Phys. A, 42 (2009), 105203, 12 pp.

[26] Vershilov A. V., Tsiganov A. V., On one integrable system with a cubic first integral, 2011, arXiv: 1103.1444v1

[27] Weierstrass K., Mathematische Werke, v. 1, Mayer Müller, Berlin, 1894, 356 pp.

[28] Rubanovskii V. N., “Integriruemye sluchai v zadache o dvizhenii tyazhelogo tverdogo tela v zhidkosti”, Dokl. AN SSSR, 180 (1968), 556–559

[29] Yehia H. M., Elmandouh A. A., “New integrable systems with a quartic integral and new generalizations of Kovalevskaya's and Goriatchev's cases”, Regul. Chaotic Dyn., 13:1 (2008), 56–69