Topological analysis and Boolean functions: II.~Application to new algebraic solutions
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 1, pp. 25-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work continues the author's article in Rus. J. Nonlinear Dynamics (2010, vol. 6, no. 4) and contains applications of the Boolean functions method to investigation of the admissible regions and the phase topology of three algebraically solvable systems in the problem of motion of the Kowalevski top in the double force field.
Keywords: algebraic separation of variables; integral manifolds; Boolean functions; topological analysis.
@article{ND_2011_7_1_a1,
     author = {M. P. Kharlamov},
     title = {Topological analysis and {Boolean} functions: {II.~Application} to new algebraic solutions},
     journal = {Russian journal of nonlinear dynamics},
     pages = {25--51},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_1_a1/}
}
TY  - JOUR
AU  - M. P. Kharlamov
TI  - Topological analysis and Boolean functions: II.~Application to new algebraic solutions
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 25
EP  - 51
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_1_a1/
LA  - ru
ID  - ND_2011_7_1_a1
ER  - 
%0 Journal Article
%A M. P. Kharlamov
%T Topological analysis and Boolean functions: II.~Application to new algebraic solutions
%J Russian journal of nonlinear dynamics
%D 2011
%P 25-51
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_1_a1/
%G ru
%F ND_2011_7_1_a1
M. P. Kharlamov. Topological analysis and Boolean functions: II.~Application to new algebraic solutions. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 1, pp. 25-51. http://geodesic.mathdoc.fr/item/ND_2011_7_1_a1/

[1] Kharlamov M. P., “Topologicheskii analiz i bulevy funktsii: I. Metody i prilozheniya k klassicheskim sistemam”, Nelineinaya dinamika, 6:4 (2010), 769–805

[2] Reyman A. G., Semenov-Tian-Shansky M. A., “Lax representation with a spectral parameter for the Kowalewski top and its generalizations”, Lett. Math. Phys., 14:1 (1987), 55–61

[3] Reiman A. G., Semenov-Tyan-Shanskii M. A., “Laksovo predstavlenie so spektralnym parametrom dlya volchka Kovalevskoi i ego obobschenii”, Funkts. analiz i ego pril., 22:2 (1988), 87–88

[4] Bogoyavlenskii O. I., “Dva integriruemykh sluchaya dinamiki tverdogo tela v silovom pole”, Dokl. AN SSSR, 275:6 (1984), 1359–1363

[5] Bogoyavlenskii O. I., “Integriruemye uravneniya Eilera na algebrakh Li, voznikayuschie v zadachakh matematicheskoi fiziki”, Izv. AN SSSR. Ser. Matem., 48:5 (1984), 883–938

[6] Zotev D. B., “Fomenko–Zieschang invariant in the Bogoyavlenskyi case”, Regul. Chaotic Dyn., 5:4 (2000), 437–458

[7] Zotev D. B., “Fazovaya topologiya 1-go klassa Appelrota volchka Kovalevskoi v magnitnom pole”, Fundament. i prikl. matem., 12:1 (2006), 95–128

[8] Kharlamov M. P., “Osobye periodicheskie resheniya obobschennogo sluchaya Delone”, MTT, 2006, no. 36, 23–33

[9] Kharlamov M. P., “Odin klass reshenii s dvumya invariantnymi sootnosheniyami zadachi o dvizhenii volchka Kovalevskoi v dvoinom postoyannom pole”, MTT, 2002, no. 32, 32–38

[10] Kharlamov M. P., Savushkin A. Yu., “Yavnoe integrirovanie odnoi zadachi o dvizhenii obobschennogo volchka Kovalevskoi”, Dokl. RAN, 401:3 (2005), 321–323

[11] Kharlamov M. P., “Kriticheskoe mnozhestvo i bifurkatsionnaya diagramma zadachi o dvizhenii volchka Kovalevskoi v dvoinom pole”, MTT, 2004, no. 34, 47–58

[12] Kharlamov M. P., “Obobschenie 4-go klassa Appelrota: oblast suschestvovaniya dvizhenii i razdelenie peremennykh”, Nelineinaya dinamika, 2:4 (2006), 453–472

[13] Kharlamov M. P., “Separation of variables in the generalized 4th Appelrot class: II. Real solutions”, Regul. Chaotic Dyn., 14:6 (2009), 621–634

[14] Kharlamov M. P., Savushkin A. Yu., “Razdelenie peremennykh i integralnye mnogoobraziya v odnoi chastnoi zadache o dvizhenii obobschennogo volchka Kovalevskoi”, Ukr. matem. vestn., 1:4 (2004), 548–565

[15] Ryabov P. E., Kharlamov M. P., “Analiticheskaya klassifikatsiya osobennostei obobschennogo sluchaya Kovalevskoi”, Vestn. UdGU, 2010, no. 2, 19–28