Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2011_7_1_a1, author = {M. P. Kharlamov}, title = {Topological analysis and {Boolean} functions: {II.~Application} to new algebraic solutions}, journal = {Russian journal of nonlinear dynamics}, pages = {25--51}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2011_7_1_a1/} }
TY - JOUR AU - M. P. Kharlamov TI - Topological analysis and Boolean functions: II.~Application to new algebraic solutions JO - Russian journal of nonlinear dynamics PY - 2011 SP - 25 EP - 51 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2011_7_1_a1/ LA - ru ID - ND_2011_7_1_a1 ER -
M. P. Kharlamov. Topological analysis and Boolean functions: II.~Application to new algebraic solutions. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 1, pp. 25-51. http://geodesic.mathdoc.fr/item/ND_2011_7_1_a1/
[1] Kharlamov M. P., “Topologicheskii analiz i bulevy funktsii: I. Metody i prilozheniya k klassicheskim sistemam”, Nelineinaya dinamika, 6:4 (2010), 769–805
[2] Reyman A. G., Semenov-Tian-Shansky M. A., “Lax representation with a spectral parameter for the Kowalewski top and its generalizations”, Lett. Math. Phys., 14:1 (1987), 55–61
[3] Reiman A. G., Semenov-Tyan-Shanskii M. A., “Laksovo predstavlenie so spektralnym parametrom dlya volchka Kovalevskoi i ego obobschenii”, Funkts. analiz i ego pril., 22:2 (1988), 87–88
[4] Bogoyavlenskii O. I., “Dva integriruemykh sluchaya dinamiki tverdogo tela v silovom pole”, Dokl. AN SSSR, 275:6 (1984), 1359–1363
[5] Bogoyavlenskii O. I., “Integriruemye uravneniya Eilera na algebrakh Li, voznikayuschie v zadachakh matematicheskoi fiziki”, Izv. AN SSSR. Ser. Matem., 48:5 (1984), 883–938
[6] Zotev D. B., “Fomenko–Zieschang invariant in the Bogoyavlenskyi case”, Regul. Chaotic Dyn., 5:4 (2000), 437–458
[7] Zotev D. B., “Fazovaya topologiya 1-go klassa Appelrota volchka Kovalevskoi v magnitnom pole”, Fundament. i prikl. matem., 12:1 (2006), 95–128
[8] Kharlamov M. P., “Osobye periodicheskie resheniya obobschennogo sluchaya Delone”, MTT, 2006, no. 36, 23–33
[9] Kharlamov M. P., “Odin klass reshenii s dvumya invariantnymi sootnosheniyami zadachi o dvizhenii volchka Kovalevskoi v dvoinom postoyannom pole”, MTT, 2002, no. 32, 32–38
[10] Kharlamov M. P., Savushkin A. Yu., “Yavnoe integrirovanie odnoi zadachi o dvizhenii obobschennogo volchka Kovalevskoi”, Dokl. RAN, 401:3 (2005), 321–323
[11] Kharlamov M. P., “Kriticheskoe mnozhestvo i bifurkatsionnaya diagramma zadachi o dvizhenii volchka Kovalevskoi v dvoinom pole”, MTT, 2004, no. 34, 47–58
[12] Kharlamov M. P., “Obobschenie 4-go klassa Appelrota: oblast suschestvovaniya dvizhenii i razdelenie peremennykh”, Nelineinaya dinamika, 2:4 (2006), 453–472
[13] Kharlamov M. P., “Separation of variables in the generalized 4th Appelrot class: II. Real solutions”, Regul. Chaotic Dyn., 14:6 (2009), 621–634
[14] Kharlamov M. P., Savushkin A. Yu., “Razdelenie peremennykh i integralnye mnogoobraziya v odnoi chastnoi zadache o dvizhenii obobschennogo volchka Kovalevskoi”, Ukr. matem. vestn., 1:4 (2004), 548–565
[15] Ryabov P. E., Kharlamov M. P., “Analiticheskaya klassifikatsiya osobennostei obobschennogo sluchaya Kovalevskoi”, Vestn. UdGU, 2010, no. 2, 19–28