Homoclinic $\Omega$-explosion: hyperbolicity intervals and their boundaries
Russian journal of nonlinear dynamics, Tome 7 (2011) no. 1, pp. 3-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

It has been established by Gavrilov and Shilnikov in [1] that, at the bifurcation boundary separating Morse–Smale systems from systems with complicated dynamics, there are systems with homoclinic tangencies. Moreover, when crossing this boundary, infinitely many periodic orbits appear immediately, just by “explosion”. Newhouse and Palis have shown in [2] that in this case there are infinitely many intervals of values of the splitting parameter corresponding to hyperbolic systems. In the present paper, we show that such hyperbolicity intervals have natural bifurcation boundaries, so that the phenomenon of homoclinic $\Omega$-explosion gains, in a sense, complete description in the case of two-dimensional diffeomorphisms.
Keywords: homoclinic tangency; heteroclinic cycle; $\Omega$-explosion; hyperbolic set.
@article{ND_2011_7_1_a0,
     author = {S. V. Gonchenko and O. V. Sten'kin},
     title = {Homoclinic $\Omega$-explosion: hyperbolicity intervals and their boundaries},
     journal = {Russian journal of nonlinear dynamics},
     pages = {3--24},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2011_7_1_a0/}
}
TY  - JOUR
AU  - S. V. Gonchenko
AU  - O. V. Sten'kin
TI  - Homoclinic $\Omega$-explosion: hyperbolicity intervals and their boundaries
JO  - Russian journal of nonlinear dynamics
PY  - 2011
SP  - 3
EP  - 24
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2011_7_1_a0/
LA  - ru
ID  - ND_2011_7_1_a0
ER  - 
%0 Journal Article
%A S. V. Gonchenko
%A O. V. Sten'kin
%T Homoclinic $\Omega$-explosion: hyperbolicity intervals and their boundaries
%J Russian journal of nonlinear dynamics
%D 2011
%P 3-24
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2011_7_1_a0/
%G ru
%F ND_2011_7_1_a0
S. V. Gonchenko; O. V. Sten'kin. Homoclinic $\Omega$-explosion: hyperbolicity intervals and their boundaries. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 1, pp. 3-24. http://geodesic.mathdoc.fr/item/ND_2011_7_1_a0/

[1] Gavrilov N. K., Shilnikov L. P., “O trekhmernykh dinamicheskikh sistemakh, blizkikh k sisteme s negruboi gomoklinicheskoi krivoi: I”, Matem. sb., 88:4 (1972), 475–492 ; Гаврилов Н. К., Шильников Л. П., “О трехмерных динамических системах, близких к системе с негрубой гомоклинической кривой: II”, Матем. сб., 90:1 (1973), 139–157

[2] Newhouse S., Palis J., “Cycles and bifurcation theory”, Trois tudes en dynamique qualitative, Asterisque, 31, Soc. Math. France, Paris, 1976, 44–140

[3] Shilnikov L. P., “Ob odnom novom tipe bifurkatsii mnogomernykh dinamicheskikh sistem”, Dokl. AN SSSR, 182:1 (1969), 53–56

[4] Afraimovich V. S., Shilnikov L. P., “O dostizhimykh perekhodakh ot sistem Morsa–Smeila k sistemam so mnogimi periodicheskimi dvizheniyami”, Izv. AN SSSR, Ser. matem., 38:6 (1974), 1248–1288

[5] Shilnikov L. P., “O rozhdenii periodicheskikh dvizhenii iz traektorii, iduschei iz sostoyaniya ravnovesiya tipa sedlo–sedlo v nego zhe”, Dokl. AN SSSR, 170:1 (1966), 49–52

[6] Palis J., “A note on $\Omega$-stability”, Global Analysis, Proc. Symp. (Berkeley, Cal., 1968), Pure Math., 14, AMS, Providence, R.I., 1970, 221–222

[7] Gavrilov N. K., “O trekhmernykh dinamicheskikh sistemakh, imeyuschikh negrubyi gomoklinicheskii kontur”, Matem. zametki, 14:5 (1973), 687–696

[8] Gonchenko S. V., “Moduli $\Omega$-sopryazhennosti dvumernykh diffeomorfizmov s negrubym geteroklinicheskim konturom”, Matem. sb., 187:9 (1996), 3–24

[9] Gonchenko S. V., Turaev D. V., Shilnikov L. P., “Ob oblastyakh Nyukhausa dvumernykh diffeomorfizmov, blizkikh k diffeomorfizmu s negrubym geteroklinicheskim konturom”, Tr. MIAN, 216, 1997, 76–125

[10] Palis J., Takens F., “Cycles and measure of bifurcation sets for two dimensional diffeomorphisms”, Invent. Math., 82 (1985), 397–422

[11] Palis J., Takens F., “Hyperbolicity and the creation of homoclinic orbit”, Ann. of Math. (2), 125 (1987), 337–374

[12] Palis J., Takens F., Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations: Fractal dimensions and infinitely many attractors, Cambridge Stud. Adv. Math., 35, Cambridge Univ. Press, Cambridge, 1993, 234 pp.

[13] Alligood K., Sander E., Yorke J., “Explosions: Global bifurcations at heteroclinic tangencies”, Ergodic Theory Dynam. Systems, 22 (2002), 953–972

[14] Stenkin O. V., Shilnikov L. P., “Gomoklinicheskii $\Omega$-vzryv i oblasti giperbolichnosti”, Matem. sb., 189:4 (1998), 125–144

[15] Gonchenko S. V., Shilnikov L. P., “Ob arifmeticheskikh svoistvakh topologicheskikh invariantov sistem s negruboi gomoklinicheskoi traektoriei”, Ukr. matem. zhurn., 39:1 (1987), 21–28

[16] Gonchenko S. V., Gonchenko V. S., “O bifurkatsiyakh rozhdeniya zamknutykh invariantnykh krivykh v sluchae dvumernykh diffeomorfizmov s gomoklinicheskimi kasaniyami”, Tr. MIAN, 244, 2004, 87–114

[17] Gonchenko S. V., Shilnikov L. P., “Ob invariantakh -sopryazhennosti diffeomorfizmov s negruboi gomoklinicheskoi traektoriei”, Ukr. matem. zhurn., 42:2 (1990), 153–159

[18] Gomoklinicheskie kasaniya, Sb. st., eds. S. V. Gonchenko, L. P. Shilnikov, NITs Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2007, 524 pp.

[19] Gonchenko S. V., Shilnikov L. P., Turaev D. V., “On dynamical properties of multidimensional diffeomorphisms from Newhouse regions: I”, Nonlinearity, 21 (2008), 923–972

[20] Gonchenko S. V., Shilnikov L. P., “O modulyakh sistem s negruboi gomoklinicheskoi krivoi Puankare”, Izv. RAN, Ser. matem., 56:6 (1992), 1165–1197

[21] Gonchenko S. V., Sten'kin O. V., Turaev D. V., “Complexity of homoclinic bifurcations and $\Omega$-moduli”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6:6 (1996), 969–989

[22] Gonchenko S. V., “Netrivialnye giperbolicheskie podmnozhestva sistem s negruboi gomoklinicheskoi krivoi”, Metody kachestvennoi teorii differentsialnykh uravnenii, Mezhvuz. temat. sb. nauch. tr., ed. E. A. Leontovich-Andronova, Gork. gos. un-t, Gorkii, 1984, 89–102

[23] Gonchenko S. V., Turaev D. V., Shilnikov L. P., “Gomoklinicheskie kasaniya proizvolnogo poryadka v oblastyakh Nyukhausa”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 67, 1999, 69–128

[24] Shilnikov L. P., “Ob odnoi zadache Puankare–Birkgofa”, Matem. sb., 74(116) (1967), 378–397

[25] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L. O., Methods of qualitative theory in nonlinear dynamics, In 2 vols, World Sci., Singapore, 2001, 957 pp.

[26] Enrich H., “A heteroclinic bifurcation of Anosov diffeomorphisms”, Ergodic Theory Dynam. Systems, 18 (1998), 567–608

[27] Hoensch U. A., “Some hyperbolic results for Hnon-like diffeomorphisms”, Nonlinearity, 21 (2008), 587–611

[28] Grines V. Z., “O topologicheskoi sopryazhennosti diffeomorfizmov dvumernogo mnogoobraziya na odnomernykh bazisnykh mnozhestvakh: Ch. 1”, Tr. MMO, 32, 1975, 35–61 ; Гринес В. З., “О топологической сопряженности диффеоморфизмов двумерного многообразия на одномерных базисных множествах: Ч. 2”, Тр. ММО, 34, 1977, 243–252