Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2011_7_1_a0, author = {S. V. Gonchenko and O. V. Sten'kin}, title = {Homoclinic $\Omega$-explosion: hyperbolicity intervals and their boundaries}, journal = {Russian journal of nonlinear dynamics}, pages = {3--24}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2011_7_1_a0/} }
TY - JOUR AU - S. V. Gonchenko AU - O. V. Sten'kin TI - Homoclinic $\Omega$-explosion: hyperbolicity intervals and their boundaries JO - Russian journal of nonlinear dynamics PY - 2011 SP - 3 EP - 24 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2011_7_1_a0/ LA - ru ID - ND_2011_7_1_a0 ER -
S. V. Gonchenko; O. V. Sten'kin. Homoclinic $\Omega$-explosion: hyperbolicity intervals and their boundaries. Russian journal of nonlinear dynamics, Tome 7 (2011) no. 1, pp. 3-24. http://geodesic.mathdoc.fr/item/ND_2011_7_1_a0/
[1] Gavrilov N. K., Shilnikov L. P., “O trekhmernykh dinamicheskikh sistemakh, blizkikh k sisteme s negruboi gomoklinicheskoi krivoi: I”, Matem. sb., 88:4 (1972), 475–492 ; Гаврилов Н. К., Шильников Л. П., “О трехмерных динамических системах, близких к системе с негрубой гомоклинической кривой: II”, Матем. сб., 90:1 (1973), 139–157
[2] Newhouse S., Palis J., “Cycles and bifurcation theory”, Trois tudes en dynamique qualitative, Asterisque, 31, Soc. Math. France, Paris, 1976, 44–140
[3] Shilnikov L. P., “Ob odnom novom tipe bifurkatsii mnogomernykh dinamicheskikh sistem”, Dokl. AN SSSR, 182:1 (1969), 53–56
[4] Afraimovich V. S., Shilnikov L. P., “O dostizhimykh perekhodakh ot sistem Morsa–Smeila k sistemam so mnogimi periodicheskimi dvizheniyami”, Izv. AN SSSR, Ser. matem., 38:6 (1974), 1248–1288
[5] Shilnikov L. P., “O rozhdenii periodicheskikh dvizhenii iz traektorii, iduschei iz sostoyaniya ravnovesiya tipa sedlo–sedlo v nego zhe”, Dokl. AN SSSR, 170:1 (1966), 49–52
[6] Palis J., “A note on $\Omega$-stability”, Global Analysis, Proc. Symp. (Berkeley, Cal., 1968), Pure Math., 14, AMS, Providence, R.I., 1970, 221–222
[7] Gavrilov N. K., “O trekhmernykh dinamicheskikh sistemakh, imeyuschikh negrubyi gomoklinicheskii kontur”, Matem. zametki, 14:5 (1973), 687–696
[8] Gonchenko S. V., “Moduli $\Omega$-sopryazhennosti dvumernykh diffeomorfizmov s negrubym geteroklinicheskim konturom”, Matem. sb., 187:9 (1996), 3–24
[9] Gonchenko S. V., Turaev D. V., Shilnikov L. P., “Ob oblastyakh Nyukhausa dvumernykh diffeomorfizmov, blizkikh k diffeomorfizmu s negrubym geteroklinicheskim konturom”, Tr. MIAN, 216, 1997, 76–125
[10] Palis J., Takens F., “Cycles and measure of bifurcation sets for two dimensional diffeomorphisms”, Invent. Math., 82 (1985), 397–422
[11] Palis J., Takens F., “Hyperbolicity and the creation of homoclinic orbit”, Ann. of Math. (2), 125 (1987), 337–374
[12] Palis J., Takens F., Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations: Fractal dimensions and infinitely many attractors, Cambridge Stud. Adv. Math., 35, Cambridge Univ. Press, Cambridge, 1993, 234 pp.
[13] Alligood K., Sander E., Yorke J., “Explosions: Global bifurcations at heteroclinic tangencies”, Ergodic Theory Dynam. Systems, 22 (2002), 953–972
[14] Stenkin O. V., Shilnikov L. P., “Gomoklinicheskii $\Omega$-vzryv i oblasti giperbolichnosti”, Matem. sb., 189:4 (1998), 125–144
[15] Gonchenko S. V., Shilnikov L. P., “Ob arifmeticheskikh svoistvakh topologicheskikh invariantov sistem s negruboi gomoklinicheskoi traektoriei”, Ukr. matem. zhurn., 39:1 (1987), 21–28
[16] Gonchenko S. V., Gonchenko V. S., “O bifurkatsiyakh rozhdeniya zamknutykh invariantnykh krivykh v sluchae dvumernykh diffeomorfizmov s gomoklinicheskimi kasaniyami”, Tr. MIAN, 244, 2004, 87–114
[17] Gonchenko S. V., Shilnikov L. P., “Ob invariantakh -sopryazhennosti diffeomorfizmov s negruboi gomoklinicheskoi traektoriei”, Ukr. matem. zhurn., 42:2 (1990), 153–159
[18] Gomoklinicheskie kasaniya, Sb. st., eds. S. V. Gonchenko, L. P. Shilnikov, NITs Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2007, 524 pp.
[19] Gonchenko S. V., Shilnikov L. P., Turaev D. V., “On dynamical properties of multidimensional diffeomorphisms from Newhouse regions: I”, Nonlinearity, 21 (2008), 923–972
[20] Gonchenko S. V., Shilnikov L. P., “O modulyakh sistem s negruboi gomoklinicheskoi krivoi Puankare”, Izv. RAN, Ser. matem., 56:6 (1992), 1165–1197
[21] Gonchenko S. V., Sten'kin O. V., Turaev D. V., “Complexity of homoclinic bifurcations and $\Omega$-moduli”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6:6 (1996), 969–989
[22] Gonchenko S. V., “Netrivialnye giperbolicheskie podmnozhestva sistem s negruboi gomoklinicheskoi krivoi”, Metody kachestvennoi teorii differentsialnykh uravnenii, Mezhvuz. temat. sb. nauch. tr., ed. E. A. Leontovich-Andronova, Gork. gos. un-t, Gorkii, 1984, 89–102
[23] Gonchenko S. V., Turaev D. V., Shilnikov L. P., “Gomoklinicheskie kasaniya proizvolnogo poryadka v oblastyakh Nyukhausa”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 67, 1999, 69–128
[24] Shilnikov L. P., “Ob odnoi zadache Puankare–Birkgofa”, Matem. sb., 74(116) (1967), 378–397
[25] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L. O., Methods of qualitative theory in nonlinear dynamics, In 2 vols, World Sci., Singapore, 2001, 957 pp.
[26] Enrich H., “A heteroclinic bifurcation of Anosov diffeomorphisms”, Ergodic Theory Dynam. Systems, 18 (1998), 567–608
[27] Hoensch U. A., “Some hyperbolic results for Hnon-like diffeomorphisms”, Nonlinearity, 21 (2008), 587–611
[28] Grines V. Z., “O topologicheskoi sopryazhennosti diffeomorfizmov dvumernogo mnogoobraziya na odnomernykh bazisnykh mnozhestvakh: Ch. 1”, Tr. MMO, 32, 1975, 35–61 ; Гринес В. З., “О топологической сопряженности диффеоморфизмов двумерного многообразия на одномерных базисных множествах: Ч. 2”, Тр. ММО, 34, 1977, 243–252