Comparative analysis of friction models in dynamics of a ball on a plane
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 4, pp. 907-912.

Voir la notice de l'article provenant de la source Math-Net.Ru

Comparative analysis of the dynamics of a homogeneous ball on a plane with dry friction is conducted for two conjectures: 1) single contact point (non-holonomic statement); 2) the normal load is distributed in the circle spot of contact with radius $\varepsilon$. It is assumed that for given active forces and coefficient of friction the non-slip motion is possible. The expression for load distribution function $\phi$ at the contact spot (second statement) is arbitrary, with general mild restrictions, which ensure correctness of the passage to the limit. It is shown that for $\varepsilon\to 0$ the trajectory of the ball with contact spot approaches the trajectory of the ball with single contact point. Previously similar result was obtained by Fufaev [1] in the case $\phi=\mathrm{const}$. The possibility of approximation of reactions of non-holonomic constraints by means of forces of viscous friction was proved [2], [3], as well as by means of forces of dry friction with infinitely large coefficient of friction [4].
Keywords: systems with rolling motion, dry friction.
@article{ND_2010_6_4_a14,
     author = {A. P. Ivanov},
     title = {Comparative analysis of friction models in dynamics of a ball on a plane},
     journal = {Russian journal of nonlinear dynamics},
     pages = {907--912},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_4_a14/}
}
TY  - JOUR
AU  - A. P. Ivanov
TI  - Comparative analysis of friction models in dynamics of a ball on a plane
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 907
EP  - 912
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_4_a14/
LA  - ru
ID  - ND_2010_6_4_a14
ER  - 
%0 Journal Article
%A A. P. Ivanov
%T Comparative analysis of friction models in dynamics of a ball on a plane
%J Russian journal of nonlinear dynamics
%D 2010
%P 907-912
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_4_a14/
%G ru
%F ND_2010_6_4_a14
A. P. Ivanov. Comparative analysis of friction models in dynamics of a ball on a plane. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 4, pp. 907-912. http://geodesic.mathdoc.fr/item/ND_2010_6_4_a14/

[1] Fufaev N. A., “Ob idealizatsii poverkhnosti soprikosnoveniya v vide tochechnogo kontakta v zadachakh kacheniya”, PMM, 39:1 (1966), 67–72 | MR

[2] Karapetyan A. V., “O realizatsii negolonomnykh svyazei silami vyazkogo treniya i ustoichivosti keltskikh kamnei”, PMM, 45:1 (1981), 42–51 | MR | Zbl

[3] Kozlov V. V., “Realizatsiya neintegriruemykh svyazei v klassicheskoi mekhanike”, Dokl. AN SSSR, 272:3 (1983), 550–554 | MR | Zbl

[4] Kozlov V. V., “Zamechanie o sukhom trenii i negolonomnykh svyazyakh”, Nelineinaya dinamika, 6:4 (2010), 903–906

[5] Neimark Yu. I., Fufaev N. A., Dinamika negolonomnykh sistem, Nauka, M., 1967, 519 pp.

[6] Markeev A. P., Dinamika tela, soprikasayuschegosya s tverdoi poverkhnostyu, Nauka, M., 1992, 335 pp.

[7] Kontensu P., “Svyaz mezhdu treniem skolzheniya i treniem vercheniya i ee uchet v teorii volchka”, Problemy giroskopii, Mir, M., 1967, 60–77

[8] Zhuravlev V. F., “Dinamika tyazhelogo odnorodnogo shara na sherokhovatoi ploskosti”, MTT, 2006, no. 6, 3–8

[9] Zhuravlev V. F., Klimov D. M., “O dinamike volchka Tomsona (tip-top) na ploskosti s realnym sukhim treniem”, Izv. RAN, MTT, 2005, no. 6, 157–168

[10] Zhuravlev V. F., Klimov D. M., “Globalnoe dvizhenie Keltskogo kamnya”, Izv. RAN, MTT, 2008, no. 3, 8–16

[11] Karapetyan A. V., “Dvukhparametricheskaya model treniya”, PMM, 73:4 (2009), 515–519 | MR

[12] Kireenkov A. A., “Svyazannye modeli treniya skolzheniya i kacheniya”, DAN, 419:6 (2008), 759–762 | Zbl

[13] Karapetyan A. V., “O modelirovanii sil treniya v dinamike shara na ploskosti”, PMM, 74:4 (2010), 531–535

[14] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschenykh uravnenii, Nauka, M., 1973, 272 pp.

[15] Ivanov A. P., “Ob usloviyakh otryva v zadache o dvizhenii tverdogo tela po sherokhovatoi ploskosti”, Nelineinaya dinamika, 4:3 (2008), 303–312 | Zbl