Synchronization and multi-frequency oscillations in the chain of phase oscillators
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 4, pp. 693-717.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the dynamics of phase oscillators is discussed with an increasing their numbers. We discuss the organization of the parameters plane responsible for the frequency detunings of the oscillators and amplitude of the dissipative coupled. The region of complete synchronization, quasi-periodic oscillations of different dimension and chaos are are observed. We discuss the changing of the synchronization picture with an increasing of the number of oscillators in the chain. We use the method of charts of Lyapunov exponents and modification of the method of charts of dynamical regimes visualized two-frequency resonant tori of different types.
Keywords: synchronization, phase oscillators, quasi-periodical dynamics
Mots-clés : chaos.
@article{ND_2010_6_4_a0,
     author = {A. P. Kuznetsov and I. R. Sataev and L. V. Turukina},
     title = {Synchronization and multi-frequency oscillations in the chain of phase oscillators},
     journal = {Russian journal of nonlinear dynamics},
     pages = {693--717},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_4_a0/}
}
TY  - JOUR
AU  - A. P. Kuznetsov
AU  - I. R. Sataev
AU  - L. V. Turukina
TI  - Synchronization and multi-frequency oscillations in the chain of phase oscillators
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 693
EP  - 717
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_4_a0/
LA  - ru
ID  - ND_2010_6_4_a0
ER  - 
%0 Journal Article
%A A. P. Kuznetsov
%A I. R. Sataev
%A L. V. Turukina
%T Synchronization and multi-frequency oscillations in the chain of phase oscillators
%J Russian journal of nonlinear dynamics
%D 2010
%P 693-717
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_4_a0/
%G ru
%F ND_2010_6_4_a0
A. P. Kuznetsov; I. R. Sataev; L. V. Turukina. Synchronization and multi-frequency oscillations in the chain of phase oscillators. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 4, pp. 693-717. http://geodesic.mathdoc.fr/item/ND_2010_6_4_a0/

[1] Pikovskii A., Rozenblyum M., Kurts Yu., Sinkhronizatsiya: Fundamentalnoe nelineinoe yavlenie, Tekhnosfera, M., 2003, 496 pp.

[2] Landa P. S., Avtokolebaniya v sistemakh s konechnym chislom stepenei svobody, Nauka, M., 1980, 360 pp.

[3] Landa P. S., Nelineinye kolebaniya i volny, Nauka, M., 1997, 496 pp.

[4] Blekhman I. I., Sinkhronizatsiya v prirode i tekhnike, Nauka, M., 1981, 352 pp.

[5] Kuramoto Y., Chemical oscillations, waves and turbulence, Springer Ser. Synergetics, 19, Springer, Berlin, 1984, 156 pp. | MR | Zbl

[6] Glass L., MacKey M. C., From clocks to chaos: The rhythms of life, Princeton Univ. Press, Princeton, 1988, 272 pp. | MR | Zbl

[7] Winfree A., The geometry of biological time, 2nd ed., Springer, New York, 2001, 800 pp. | MR

[8] Anischenko V. S., Astakhov V. V., Vadivasova T. E., Strelkova G. I., Sinkhronizatsiya regulyarnykh, khaoticheskikh i stokhasticheskikh kolebanii, Inst. kompyutern. issled., M.–Izhevsk, 2008, 136 pp.

[9] Kuznetsov A. P., Kuznetsov S. P., Ryskin N. M., Nelineinye kolebaniya, 2-e izd., Fizmatlit, M., 2005, 292 pp.

[10] Ivanchenko M. V., Osipov G. V., Shalfeev V. D., Kurths J., “Synchronization of two non-scalar-coupled limit-cycle oscillators”, Phys. D, 189:1-2 (2004), 8–30 | DOI | MR | Zbl

[11] Kuznetsov A. P., Stankevich N. V., Turukina L. V., “Coupled van der Pol-Duffing oscillators: Phase dynamics and structure of synchronization tongues”, Phys. D, 238:14 (2009), 1203–1215 | DOI | MR | Zbl

[12] Kuznetsov A. P., Roman Ju. P., “Properties of synchronization in the systems of non-identical coupled van der Pol and van der Pol-Duffing oscillators: Broadband synchronization”, Phys. D, 238:16 (2009), 1499–1506 | DOI | MR | Zbl

[13] Baesens S., Guckenheimer J., Kim S., MacKay R. S., “Three coupled oscillators: Mode locking, global bifurcations and toroidal chaos”, Phys. D, 49 (1991), 387–475 | DOI | MR | Zbl

[14] Rockmore D., Siegel R., Tongring N., Tresser C., “An approach to renormalization on the n-torus”, Chaos, 1:1 (1991), 25–30 | DOI | MR | Zbl

[15] Baladi V., Rockmore D., Tongring N., Tresser C., “Renormalization on the n-dimensional torus”, Nonlinearity, 5:5 (1992), 1111–1136 | DOI | MR | Zbl

[16] Ruelle D., Takens F., “On the nature of turbulence”, Comm. Math. Phys., 20:3 (1971), 167–192 | DOI | MR | Zbl

[17] Linsay P. S., Cumming A. W., “Three-frequency quasiperiodicity, phase locking, and the onset of chaos”, Phys. D, 40 (1989), 196–217 | DOI | MR | Zbl

[18] Battelino P. M., “Persistence of three-frequency quasiperiodicity under large perturbations”, Phys. Rev. A, 38 (1988), 1495–1502 | DOI | MR

[19] Ashwin P., Guasch J., Phelps J. M., “Rotation sets and phase-locking in an electronic three oscillator system”, Phys. D, 66:3-4 (1993), 392–411 | DOI | Zbl

[20] Ashwin P., “Boundary of two frequency behaviour in a system of three weakly coupled electronic oscillators”, Chaos Solitons Fractals, 9:8 (1998), 1279–1287 | DOI | MR | Zbl

[21] Pazo D., Sanchez E., Matias M. A., “Transition to high-dimensional chaos through quasiperiodic motion”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11:10 (2001), 2683–2688 | DOI

[22] Yang J., “Quasiperiodicity and transition to chaos”, Phys. Rev. E, 61 (2000), 6521–6526 | DOI

[23] Ashwin P., King G. P., Swift J. W., “Three identical oscillators with symmetric coupling”, Nonlinearity, 1990, no. 3, 581–601 | MR

[24] Ashwin P., Burylko O., Maistrenko Y., “Bifurcation to heteroclinic cycles and sensitivity in three and four coupled phase oscillators”, Phys. D, 237 (2008), 454–466 | DOI | MR | Zbl

[25] Karabacak O., Ashwin P., “Heteroclinic ratchets in a system in networks of coupled oscillators”, J. Nonlinear Sci., 20:1 (2010), 105–129 | DOI | Zbl

[26] Buskirk R. V., Jeffries C., “Observation of chaotic dynamics of coupled nonlinear oscillators”, Phys. Rev. A, 31 (1985), 3332–3357 | DOI | MR

[27] Anishchenko V., Nikolaev S., Kurths J., “Bifurcational mechanisms of synchronization of a resonant limit cycle on a two-dimensional torus”, Chaos, 18 (2008), 037123, 7 pp. | DOI | MR

[28] Anishchenko V., Nikolaev S., “Transition to chaos from quasiperiodic motions on the four-dimensional torus perturbed by external noise”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18:9 (2008), 2733–2741 | DOI | MR | Zbl

[29] Anishchenko V. S., Nikolaev S. M., Kurths J., “Peculiarities of synchronization of a resonant limit cycle on a two-dimensional torus”, Phys. Rev. E, 76 (2007), 046216, 4 pp.

[30] Anishchenko V., Astakhov V., Vadivasova T., “Phase dynamics of two coupled oscillators under external periodic force”, Europhys. Lett., 86 (2009), 30003 | DOI

[31] Anischenko V. S., Astakhov S. V., Vadivasova T. E., Feoktistov A. V., “Chislennoe i eksperimentlnoe issledovanie vneshnei sinkhronizatsii dvukhchastotnykh kolebanii”, Nelineinaya dinamika, 5:2 (2009), 237–252

[32] Kuznetsov A. P., Sataev I. R., Tyuryukina L. V., “Sinkhronizatsiya kvaziperiodicheskikh kolebanii svyazannykh fazovykh ostsillyatorov”, Pisma v ZhTF, 36:10 (2010), 73–80

[33] Arnold V. I., Obyknovennye differentsialnye uravneniya, 3-e izd., Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2000, 368 pp.

[34] Kuznetsov A. P., Sataev I. R., Tyuryukina L. V., “Fazovaya dinamika vozbuzhdaemykh kvaziperiodicheskikh avtokolebatelnykh ostsillyatorov”, Konferentsiya molodykh uchenykh (6–12 marta 2010 g., Nizhnii Novgorod), Tezisy dokladov, IPF RAN, N. Novgorod, 2010, 126–127