Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2010_6_3_a9, author = {A. A. Tolchennikov and V. L. Chernyshev and A. I. Shafarevich}, title = {Asymptotic properties and classical dynamical systems in quantum problems on singular spaces}, journal = {Russian journal of nonlinear dynamics}, pages = {623--638}, publisher = {mathdoc}, volume = {6}, number = {3}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2010_6_3_a9/} }
TY - JOUR AU - A. A. Tolchennikov AU - V. L. Chernyshev AU - A. I. Shafarevich TI - Asymptotic properties and classical dynamical systems in quantum problems on singular spaces JO - Russian journal of nonlinear dynamics PY - 2010 SP - 623 EP - 638 VL - 6 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2010_6_3_a9/ LA - ru ID - ND_2010_6_3_a9 ER -
%0 Journal Article %A A. A. Tolchennikov %A V. L. Chernyshev %A A. I. Shafarevich %T Asymptotic properties and classical dynamical systems in quantum problems on singular spaces %J Russian journal of nonlinear dynamics %D 2010 %P 623-638 %V 6 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2010_6_3_a9/ %G ru %F ND_2010_6_3_a9
A. A. Tolchennikov; V. L. Chernyshev; A. I. Shafarevich. Asymptotic properties and classical dynamical systems in quantum problems on singular spaces. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 3, pp. 623-638. http://geodesic.mathdoc.fr/item/ND_2010_6_3_a9/
[1] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v. 1, Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1973, 294 pp.
[2] Maslov V. P., Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977, 384 pp.
[3] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976, 296 pp.
[4] Pokornyi Yu. V., Penkin O. M., Pryadiev V. L., Borovskikh A. V., Lazarev K. P., Shabrov S. A., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004, 272 pp.
[5] Uitteker E., Vatson Dzh., Kurs sovremennogo analiza: Ch. 2: Transtsendentnye funktsii, Fizmatlit, M., 1963, 515 pp.
[6] Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H., Solvable models in quantum mechanics, 2nd ed., AMS, Providence, RI, 2005, 488 pp. | MR
[7] Chernyshev V. L., Shafarevich A. I., “Kvaziklassicheskii spektr operatora Shrëdingera na geometricheskom grafe”, Matem. zametki, 82:4 (2007), 606–-620 | MR | Zbl
[8] Brüning J., Geyler V., “Scattering on compact manifolds with infinitely thin horns”, J. Math. Phys., 44:2 (2003), 371–405 | DOI | MR
[9] Exner P., Post O., “Convergence of spectra of graph-like thin manifolds”, J. Geom. Phys., 54 (2005), 77–115 | DOI | MR | Zbl
[10] Chernyshev V. L., Shafarevich A. I., “Semiclassical asymptotics and statistical properties of Gaussian packets for the nonstationary Schrödinger equation on a geometric graph”, Russ. J. Math. Phys., 15:1 (2008), 25–34 | MR | Zbl
[11] Kuchment P., Quantum graphs: an introduction and a brief survey, 2008, arXiv: 0802.3442v1 | MR
[12] Sobolev A. V., Solomyak M. Z., “Schroedinger operators on homogeneous metric trees: Spectrum in gaps”, Rev. Math. Phys., 14:5 (2002), 421–468 | DOI | MR
[13] Chernyshev V. L., “Nestatsionarnoe uravnenie Shredingera: Statistika rasprostraneniya gaussovykh paketov na geometricheskom grafe”, Tr. MIAN, 270, 2010, 249–265 | MR | Zbl