Asymptotic properties and classical dynamical systems in quantum problems on singular spaces
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 3, pp. 623-638.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the first part of the article we consider a semiclassical asymptotics for a Cauchy problem for the Schrödinger operator on a metric graph. We discuss the statistical properties of the corresponding classical dynamical system: the behavior of “number of particles” at large times and distribution of “particles” on the graph. We describe the distribution of energy on infinite regular trees. In the second part we describe the asymptotics of the spectrum of the Laplace and Schrödinger operators on a thin torus and on the simplest surfaces with delta-potentials.
Keywords: dynamical systems, quantum, metric graphs, semiclassical theory, spectral properties, Schrödinger operator.
@article{ND_2010_6_3_a9,
     author = {A. A. Tolchennikov and V. L. Chernyshev and A. I. Shafarevich},
     title = {Asymptotic properties and classical dynamical systems in quantum problems on singular spaces},
     journal = {Russian journal of nonlinear dynamics},
     pages = {623--638},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_3_a9/}
}
TY  - JOUR
AU  - A. A. Tolchennikov
AU  - V. L. Chernyshev
AU  - A. I. Shafarevich
TI  - Asymptotic properties and classical dynamical systems in quantum problems on singular spaces
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 623
EP  - 638
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_3_a9/
LA  - ru
ID  - ND_2010_6_3_a9
ER  - 
%0 Journal Article
%A A. A. Tolchennikov
%A V. L. Chernyshev
%A A. I. Shafarevich
%T Asymptotic properties and classical dynamical systems in quantum problems on singular spaces
%J Russian journal of nonlinear dynamics
%D 2010
%P 623-638
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_3_a9/
%G ru
%F ND_2010_6_3_a9
A. A. Tolchennikov; V. L. Chernyshev; A. I. Shafarevich. Asymptotic properties and classical dynamical systems in quantum problems on singular spaces. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 3, pp. 623-638. http://geodesic.mathdoc.fr/item/ND_2010_6_3_a9/

[1] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v. 1, Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1973, 294 pp.

[2] Maslov V. P., Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977, 384 pp.

[3] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976, 296 pp.

[4] Pokornyi Yu. V., Penkin O. M., Pryadiev V. L., Borovskikh A. V., Lazarev K. P., Shabrov S. A., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004, 272 pp.

[5] Uitteker E., Vatson Dzh., Kurs sovremennogo analiza: Ch. 2: Transtsendentnye funktsii, Fizmatlit, M., 1963, 515 pp.

[6] Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H., Solvable models in quantum mechanics, 2nd ed., AMS, Providence, RI, 2005, 488 pp. | MR

[7] Chernyshev V. L., Shafarevich A. I., “Kvaziklassicheskii spektr operatora Shrëdingera na geometricheskom grafe”, Matem. zametki, 82:4 (2007), 606–-620 | MR | Zbl

[8] Brüning J., Geyler V., “Scattering on compact manifolds with infinitely thin horns”, J. Math. Phys., 44:2 (2003), 371–405 | DOI | MR

[9] Exner P., Post O., “Convergence of spectra of graph-like thin manifolds”, J. Geom. Phys., 54 (2005), 77–115 | DOI | MR | Zbl

[10] Chernyshev V. L., Shafarevich A. I., “Semiclassical asymptotics and statistical properties of Gaussian packets for the nonstationary Schrödinger equation on a geometric graph”, Russ. J. Math. Phys., 15:1 (2008), 25–34 | MR | Zbl

[11] Kuchment P., Quantum graphs: an introduction and a brief survey, 2008, arXiv: 0802.3442v1 | MR

[12] Sobolev A. V., Solomyak M. Z., “Schroedinger operators on homogeneous metric trees: Spectrum in gaps”, Rev. Math. Phys., 14:5 (2002), 421–468 | DOI | MR

[13] Chernyshev V. L., “Nestatsionarnoe uravnenie Shredingera: Statistika rasprostraneniya gaussovykh paketov na geometricheskom grafe”, Tr. MIAN, 270, 2010, 249–265 | MR | Zbl