On the absence of an additional meromorphic first integral in the Riemann problem on the motion of a liquid ellipsoid
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 3, pp. 567-572.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the absence of an additional meromorphic first integral in the Riemann problem on the motion of a homogeneous liquid ellipsoid with zero angular and vortex momenta in the case of zero self-gravitation.
Keywords: Riemann problem, liquid ellipsoid, meromorphic first integral.
@article{ND_2010_6_3_a6,
     author = {S. L. Ziglin},
     title = {On the absence of an additional meromorphic first integral in the {Riemann} problem on the motion of a liquid ellipsoid},
     journal = {Russian journal of nonlinear dynamics},
     pages = {567--572},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_3_a6/}
}
TY  - JOUR
AU  - S. L. Ziglin
TI  - On the absence of an additional meromorphic first integral in the Riemann problem on the motion of a liquid ellipsoid
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 567
EP  - 572
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_3_a6/
LA  - ru
ID  - ND_2010_6_3_a6
ER  - 
%0 Journal Article
%A S. L. Ziglin
%T On the absence of an additional meromorphic first integral in the Riemann problem on the motion of a liquid ellipsoid
%J Russian journal of nonlinear dynamics
%D 2010
%P 567-572
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_3_a6/
%G ru
%F ND_2010_6_3_a6
S. L. Ziglin. On the absence of an additional meromorphic first integral in the Riemann problem on the motion of a liquid ellipsoid. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 3, pp. 567-572. http://geodesic.mathdoc.fr/item/ND_2010_6_3_a6/

[1] Riemann B., “Ein Beitrag zu den Untersuchungen Über die Bewegung einer flüssigen gleichartigen Ellipsoides”, Abh. d. Königl. Gesell. der Wiss. zu Göttingen, 1861

[2] Borisov A. V., Mamaev I. S., Kilin A. A., “Gamiltonova dinamika zhidkikh i gazovykh samogravitiruyuschikh ellipsoidov”, Nelineinaya dinamika, 4:4 (2008), 363–407

[3] Ziglin S. L., “Vetvlenie reshenii i nesuschestvovanie pervykh integralov v gamiltonovoi mekhanike: 1”, Funktsion. analiz i ego pril., 16:3 (1982), 30–41 | MR

[4] Ziglin S. L., “O pervykh integralakh gruppy kompleksnykh lineinykh preobrazovanii i naturalnykh mekhanicheskikh sistem s odnorodnym potentsialom”, Matem. zametki, 70:6 (2001), 839–844 | MR | Zbl

[5] Churchill R. C., “Two generator subgroups of $\mathrm{SL}(2,\mathbf C)$ and the hypergeometric, Riemann, and Lamé equations. Differential algebra and differential equations”, J. Symbolic Comput., 28:4-5 (1999), 521–545 | DOI | MR | Zbl

[6] Iwasaki K., Kimura H., Shimomura S., and Yoshida M., From Gauss to Painlevé: A modern theory of special functions, Vieweg Sohn, Braunschweig, 1991, 347 pp. | MR | Zbl

[7] Golubev V. V., Lektsii po analiticheskoi teorii differentsialnykh uravnenii, Gostekhizdat, M.–L., 1950, 436 pp.

[8] Borisov A. V., lichnoe soobschenie