Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2010_6_3_a6, author = {S. L. Ziglin}, title = {On the absence of an additional meromorphic first integral in the {Riemann} problem on the motion of a liquid ellipsoid}, journal = {Russian journal of nonlinear dynamics}, pages = {567--572}, publisher = {mathdoc}, volume = {6}, number = {3}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2010_6_3_a6/} }
TY - JOUR AU - S. L. Ziglin TI - On the absence of an additional meromorphic first integral in the Riemann problem on the motion of a liquid ellipsoid JO - Russian journal of nonlinear dynamics PY - 2010 SP - 567 EP - 572 VL - 6 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2010_6_3_a6/ LA - ru ID - ND_2010_6_3_a6 ER -
%0 Journal Article %A S. L. Ziglin %T On the absence of an additional meromorphic first integral in the Riemann problem on the motion of a liquid ellipsoid %J Russian journal of nonlinear dynamics %D 2010 %P 567-572 %V 6 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2010_6_3_a6/ %G ru %F ND_2010_6_3_a6
S. L. Ziglin. On the absence of an additional meromorphic first integral in the Riemann problem on the motion of a liquid ellipsoid. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 3, pp. 567-572. http://geodesic.mathdoc.fr/item/ND_2010_6_3_a6/
[1] Riemann B., “Ein Beitrag zu den Untersuchungen Über die Bewegung einer flüssigen gleichartigen Ellipsoides”, Abh. d. Königl. Gesell. der Wiss. zu Göttingen, 1861
[2] Borisov A. V., Mamaev I. S., Kilin A. A., “Gamiltonova dinamika zhidkikh i gazovykh samogravitiruyuschikh ellipsoidov”, Nelineinaya dinamika, 4:4 (2008), 363–407
[3] Ziglin S. L., “Vetvlenie reshenii i nesuschestvovanie pervykh integralov v gamiltonovoi mekhanike: 1”, Funktsion. analiz i ego pril., 16:3 (1982), 30–41 | MR
[4] Ziglin S. L., “O pervykh integralakh gruppy kompleksnykh lineinykh preobrazovanii i naturalnykh mekhanicheskikh sistem s odnorodnym potentsialom”, Matem. zametki, 70:6 (2001), 839–844 | MR | Zbl
[5] Churchill R. C., “Two generator subgroups of $\mathrm{SL}(2,\mathbf C)$ and the hypergeometric, Riemann, and Lamé equations. Differential algebra and differential equations”, J. Symbolic Comput., 28:4-5 (1999), 521–545 | DOI | MR | Zbl
[6] Iwasaki K., Kimura H., Shimomura S., and Yoshida M., From Gauss to Painlevé: A modern theory of special functions, Vieweg Sohn, Braunschweig, 1991, 347 pp. | MR | Zbl
[7] Golubev V. V., Lektsii po analiticheskoi teorii differentsialnykh uravnenii, Gostekhizdat, M.–L., 1950, 436 pp.
[8] Borisov A. V., lichnoe soobschenie