On classification of classical and half-orientable horseshoes in terms of boundary points
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 3, pp. 549-566.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recently, Smale horseshoes of new types, the so called half-orientable horseshoes, were found in [1]. Such horseshoes may exist for endomorphisms of the disk and for diffeomorphisms of non-orientable two-dimensional manifolds as well.They have many interesting properties different from those of the classical orientable and non-orientable horseshoes. In particular, half-orientable horseshoes may have boundary points of arbitrary periods. It is shown from this fact that there are infinitely many types of such horseshoes with respect to the local topological congugacy. To prove this and similar results, an effective geometric construction is used.
Keywords: Smale horseshoe, local topological conjugacy, hyperbolic set, standard and generalized Hénon maps.
@article{ND_2010_6_3_a5,
     author = {S. V. Gonchenko and A. S. Gonchenko and M. I. Malkin},
     title = {On classification of classical and half-orientable horseshoes in terms of boundary points},
     journal = {Russian journal of nonlinear dynamics},
     pages = {549--566},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_3_a5/}
}
TY  - JOUR
AU  - S. V. Gonchenko
AU  - A. S. Gonchenko
AU  - M. I. Malkin
TI  - On classification of classical and half-orientable horseshoes in terms of boundary points
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 549
EP  - 566
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_3_a5/
LA  - ru
ID  - ND_2010_6_3_a5
ER  - 
%0 Journal Article
%A S. V. Gonchenko
%A A. S. Gonchenko
%A M. I. Malkin
%T On classification of classical and half-orientable horseshoes in terms of boundary points
%J Russian journal of nonlinear dynamics
%D 2010
%P 549-566
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_3_a5/
%G ru
%F ND_2010_6_3_a5
S. V. Gonchenko; A. S. Gonchenko; M. I. Malkin. On classification of classical and half-orientable horseshoes in terms of boundary points. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 3, pp. 549-566. http://geodesic.mathdoc.fr/item/ND_2010_6_3_a5/

[1] Gonchenko S., Li M.-Ch., Malkin M., “Generalized Hénon maps and Smale horseshoes of new types”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18:10 (2008), 3029–3052 | DOI | MR | Zbl

[2] Gonchenko S. V., Gonchenko A. S., “K voprosu o klassifikatsii lineinykh i nelineinykh podkov Smeila”, Nelineinaya dinamika, 3:4 (2007), 423–443

[3] Grines V. Z., “O topologicheskoi sopryazhennosti diffeomorfizmov dvumernogo mnogoobraziya na odnomernykh bazisnykh mnozhestvakh: Ch. 1”, Tr. MMO, 32, 1975, 35–61 ; Тр. ММО, 34, 1977, 243–252 | MR | Zbl

[4] Dinamicheskie sistemy–9, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 66, eds. D. V. Anosov, S. Kh. Aranson, V. Z. Grines i dr., VINITI, M., 1991, 248 pp.

[5] Anosov D. V., Aranson S. Kh., Bronshtein I. U., Grines V. Z., “Gladkie dinamicheskie sistemy”, Dinamicheskie sistemy–1, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 1, eds. D. V. Anosov, V. I. Arnold, VINITI, M., 1985, 151–242

[6] Afraimovich V. S., Shilnikov L. P., “Strange attractors and quasiattractors”, Nonlinear dynamics and turbulence, Interaction Mech. Math. Ser., eds. G. I. Barenblatt, G. Loos, and D. D. Joseph, Pitman, Boston, MA, 1983, 1–34 | MR

[7] Afraimovich V. S., “Strange attractors and quaiattractors”, Nonlinear and turbulent processes in physics, v. 3, ed. R. Z. Sagdeev, Harwood Acad. Publ., Chur, 1984, 1133–1138 | MR

[8] Smale S., “Diffeomorphisms with many periodic points”, Differential and combinatorial topology, A symposium in honor of Marston Morse (1965), ed. S. S. Cairns, Princeton Univ. Press, Princeton, NJ, 1965, 63–80 | MR | Zbl

[9] Shilnikov L. P., “Ob odnoi zadache Puankare–Birkgofa”, Matem. sb., 74:3 (1967), 378–397 | MR | Zbl

[10] Shilnikov L. P., “Ob odnom sluchae suschestvovaniya schetnogo mnozhestva periodicheskikh dvizhenii”, Dokl. AN SSSR, 160:3 (1965), 558–561 | MR | Zbl

[11] Shilnikov L. P., “K voprosu o strukture rasshirennoi okrestnosti grubogo sostoyaniya ravnovesiya tipa sedlo-fokus”, Matem. sb., 81:1 (1970), 92–103 | MR | Zbl

[12] Gavrilov N. K., Shilnikov L. P., “O trekhmernykh dinamicheskikh sistemakh, blizkikh k sisteme s negruboi gomoklinicheskoi krivoi: Ch. 1”, Matem. sb., 88:4 (1972), 475–492 ; Матем. сб., 90:1 (1973), 139–156 | MR | Zbl | Zbl

[13] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S., Shilnikov L. P., “Teoriya bifurkatsii”, Dinamicheskie sistemy – 5, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 5, ed. V. I. Arnold, VINITI, M., 1986, 5–-218

[14] Gomoklinicheskie kasaniya, Sb. st., eds. S. V. Gonchenko, L. P. Shilnikov, RKhD, M.–Izhevsk, 2007, 524 pp.

[15] Tedeshini-Lalli L., Yorke J. A., “How often do simple dynamical processes have infinitely many coexisting sinks?”, Comm. Math. Phys., 106:4 (1986), 635–657 | DOI | MR

[16] Gonchenko S. V., Turaev D. V., Shilnikov L. P., “Dinamicheskie yavleniya v mnogomernykh sistemakh s negruboi gomoklinicheskoi krivoi Puankare”, Dokl. RAN, 330:2 (1993), 144–147 | MR | Zbl

[17] Devaney R., Nitecki Z., “Shift automorphisms in the Hénon mapping”, Comm. Math. Phys., 67:2 (1979), 137–146 | DOI | MR | Zbl

[18] Li M.-Ch., Malkin M., “Bounded nonwandering sets for polynomial mappings”, J. Dyn. Control Syst., 10:3 (2004), 377–389 | DOI | MR

[19] Gonchenko S. V., Gonchenko V. S., On Andronov-Hopf bifurcations of two-dimensional diffeomorphisms with homoclinic tangencies, Preprint (WIAS, No. 556), WIAS, Berlin, 2000, 27 pp. | MR

[20] Gonchenko S. V., Gonchenko V. S., “O bifurkatsiyakh rozhdeniya zamknutykh invariantnykh krivykh v sluchae dvumernykh diffeomorfizmov s gomoklinicheskimi kasaniyami”, Trudy MIAN, 244, 2004, 87–114 | Zbl

[21] Bischi G.-I., Gardini L., Mira Ch., “Plane maps with denominator: P. 1: Some generic properties”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9:1 (1999), 119–153 | DOI | MR | Zbl