The Vlasov kinetic equation, dynamics of continuum and turbulence
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 3, pp. 489-512.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a continuum of interacting particles whose evolution is governed by the Vlasov kinetic equation. An infinite sequence of equations of motion for this medium (in the Eulerian description) is derived and its general properties are explored. An important example is a collisionless gas, which exhibits irreversible behavior. Though individual particles interact via a potential, the dynamics of the continuum bears dissipative features. Applicability of the Vlasov equations to the modeling of small-scale turbulence is discussed.
Keywords: kinetic Vlasov's equation, continuum
Mots-clés : Euler's equation, turbulence.
@article{ND_2010_6_3_a1,
     author = {V. V. Kozlov},
     title = {The {Vlasov} kinetic equation, dynamics of continuum and turbulence},
     journal = {Russian journal of nonlinear dynamics},
     pages = {489--512},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_3_a1/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - The Vlasov kinetic equation, dynamics of continuum and turbulence
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 489
EP  - 512
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_3_a1/
LA  - ru
ID  - ND_2010_6_3_a1
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T The Vlasov kinetic equation, dynamics of continuum and turbulence
%J Russian journal of nonlinear dynamics
%D 2010
%P 489-512
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_3_a1/
%G ru
%F ND_2010_6_3_a1
V. V. Kozlov. The Vlasov kinetic equation, dynamics of continuum and turbulence. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 3, pp. 489-512. http://geodesic.mathdoc.fr/item/ND_2010_6_3_a1/

[1] Bogolyubov N. N., Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M.–L., 1946, 120 pp.

[2] Uhlenbeck G. E., Ford G. W., Lectures in statistical mechanics, AMS, Providence, RI, 1963, 181 pp. | MR

[3] Chetverushkin B. N., Kineticheskie skhemy i kvazigazodinamicheskaya sistema uravnenii, Maks Press, M., 2004, 332 pp.

[4] Kats M., Neskolko veroyatnostnykh zadach fiziki i matematiki, Nauka, M., 1967, 176 pp.

[5] Vlasov A. A., Statisticheskie funktsii raspredeleniya, Nauka, M., 1966, 356 pp.

[6] Vedenyapin V. V., Kineticheskie uravneniya Boltsmana i Vlasova, Fizmatlit, M., 2001, 112 pp.

[7] Maslov V. P., “Equations of the self-consistent field”, J. Soviet Math., 11 (1979), 123–195 | DOI | MR | Zbl

[8] Funct. Anal. Appl., 13:2 (1979), 115–123 | DOI | MR | Zbl | Zbl

[9] Arsenev A. A., “O nekotorykh otsenkakh resheniya uravneniya Vlasova”, Zhurn. vychislit. matem. i matem. fiz., 25:1 (1985), 80–87 | MR

[10] Kozlov V. V., “The generalized Vlasov kinetic equation”, Russian Math. Surveys, 63:4 (2008), 691–726 | DOI | MR | Zbl

[11] Benney D. J., “Some properties of long nonlinear waves”, Studies in Applied Mathematics, 52:1 (1973), 45–50 | Zbl

[12] Zakharov V. E., “Uravneniya Benni i kvaziklassicheskoe priblizhenie v metode obratnoi zadachi”, Funkts. analiz i ego pril., 14:2 (1980), 15–24 | MR

[13] Gibbons J., “Collisionless Boltzmann equations and integrable moment equations”, Phys. D, 3 (1981), 503–511 | DOI | MR | Zbl

[14] Lebedev D. R., Manin Yu. I., “Conservation laws and Lax representation for Benney's long wave equation”, Phys. Lett. A, 74 (1979), 154–156 | DOI | MR

[15] Gibbons J., Tsarev S. P., “Reductions of the Benney equations”, Phys. Lett. A, 211 (1996), 19–24 | DOI | MR | Zbl

[16] Akhiezer N. I., Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Fizmatlit, M., 1961, 310 pp.

[17] Poincaré H., Figures d'équilibre d'une masse fluide, Gauthier-Villars, Paris, 1902, 210 pp.

[18] Poincaré H., “Réfflexions sur la théorie cinétique des gaz”, J. Phys. théoret. et appl., sér. 4, 5 (1906), 369–403 | Zbl

[19] Kozlov V. V., “Kinetics of collisionless continuous medium”, Regul. Chaotic Dyn., 6:3 (2001), 235–251 | DOI | MR | Zbl

[20] Kozlov V. V., “Notes on diffusion in collisionless medium”, Regul. Chaotic Dyn., 9:1 (2004), 29–34 | DOI | MR | Zbl

[21] Pokhozhaev S. I., “O statsionarnykh resheniyakh uravnenii Vlasova-Puassona”, Differents. uravneniya, 46:4 (2010), 527–534 | MR | Zbl

[22] Batt J., Faltenbacher W., Horst E., “Stationary spherically symmetric models in stellar dynamics”, Arch. Ration. Mech. Anal., 93:2 (1986), 159–183 | DOI | MR | Zbl

[23] Batt J., Berestycki H., Decond P., Pertname B., “Some families of solutions of the Vlasov–Poisson system”, Arch. Ration. Mech. Anal., 104:1 (1988), 79–103 | DOI | MR | Zbl

[24] Vedenyapin V. V., “O klassifikatsii statsionarnykh reshenii uravneniya Vlasova na tore i granichnaya zadacha”, Dokl. RAN. Ser. Matem., 323:6 (1992), 1004–1006 | Zbl

[25] Carleman T., Problèmes mathématiques dans la théorie cinétique des gaz, Almqvist Wiksells, Upsala, 1957, 112 pp. ; Karleman T., Matematicheskie zadachi kineticheskoi teorii gazov, Izd-vo inostr. liter., M., 1960, 120 pp. | MR | Zbl | MR

[26] Poincaré H., Les méthodes nouvelles de la Mécanique céleste, v. 1, Gauthier-Villars, Paris, 1892, 385 pp. | Zbl

[27] Kozlov V. V., Symmetries, topology, and resonances in Hamiltonian mechanics, Springer, Berlin, 1995, 378 pp. | MR

[28] Belotserkovskii O. M., Fimin N. N., Chechetkin V. M., “Primenenie uravneniya Katsa k modelirovaniyu turbulentnosti”, Zhurn. vychislit. matem. i matem. fiz., 50:3 (2010), 575–584 | MR | Zbl

[29] Pfaffelmoser K., “Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data”, J. Differential Equations, 95:2 (1992), 281–303 | DOI | MR | Zbl

[30] Lions P. L., Perthame B., “Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system”, Invent. Math., 105:2 (1991), 415–430 | DOI | MR | Zbl

[31] Physics–Uspekhi, 50:2 (2007), 115–139 | DOI | DOI