Problems of stability and asymptotic behavior of vortex patches on the plane
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 2, pp. 327-343 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

With the help of mathematical modelling, we study the dynamics of many point vortices system on the plane. For this system, we consider the following cases: – vortex rings with outer radius $r=1$ and variable inner radius $r_0$, – vortex ellipses with semiaxes $a$, $b$. The emphasis is on the analysis of the asymptotic ($t\to\infty$) behavior of the system and on the verification of the stability criteria for vorticity continuous distributions.
Keywords: vortex dynamics, hydrodynamics, asymptotic behavior.
Mots-clés : point vortex
@article{ND_2010_6_2_a6,
     author = {V. V. Vaskin and A. V. Vaskina and I. S. Mamaev},
     title = {Problems of stability and asymptotic behavior of vortex patches on the plane},
     journal = {Russian journal of nonlinear dynamics},
     pages = {327--343},
     year = {2010},
     volume = {6},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_2_a6/}
}
TY  - JOUR
AU  - V. V. Vaskin
AU  - A. V. Vaskina
AU  - I. S. Mamaev
TI  - Problems of stability and asymptotic behavior of vortex patches on the plane
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 327
EP  - 343
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_2_a6/
LA  - ru
ID  - ND_2010_6_2_a6
ER  - 
%0 Journal Article
%A V. V. Vaskin
%A A. V. Vaskina
%A I. S. Mamaev
%T Problems of stability and asymptotic behavior of vortex patches on the plane
%J Russian journal of nonlinear dynamics
%D 2010
%P 327-343
%V 6
%N 2
%U http://geodesic.mathdoc.fr/item/ND_2010_6_2_a6/
%G ru
%F ND_2010_6_2_a6
V. V. Vaskin; A. V. Vaskina; I. S. Mamaev. Problems of stability and asymptotic behavior of vortex patches on the plane. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 2, pp. 327-343. http://geodesic.mathdoc.fr/item/ND_2010_6_2_a6/

[1] Onsager L., “Statistical hydrodynamics”, Nuovo Cimento, 6, suppl. (1949), 279–287 | DOI | MR

[2] Montgomery D., Joyce G., “Statistical mechanics of negative temperature states”, Phys. Fluids, 17:6 (1974), 1139–1145 | DOI | MR

[3] Kozlov V. V., “Uravnenie vikhrya 2D-gidrodinamiki, statsionarnoe kineticheskoe uravnenie Vlasova i razvitaya turbulentnost”, Nelineinaya dinamika, 2:4 (2006), 425–434 | MR

[4] Helmholtz H., “Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen”, J. Reine Angew. Math., 55 (1858), 25–55 | DOI | Zbl

[5] Kirchhoff G., Vorlesungen über mathematische Physik, Mechanik, Leipzig, 1874

[6] Strett Dzh. V. (lord Relei), Teoriya zvuka, v. II, GITTL, M., 1955, 476 pp.

[7] Drazin F., Vvedenie v teoriyu gidrodinamicheskoi ustoichivosti, Fizmatlit, M., 2005, 288 pp.

[8] Love A. E. H., “On the stability of certain vortex motions”, Proc. London Math. Soc., 25 (1894), 18–42 | DOI

[9] Bühler O., “Statistical mechanics of strong and weak point vortices in a cylinder”, Phys. Fluids, 14:7 (2002), 2139–2149 | DOI | MR

[10] Pavlov V., Buisine D., and Goncharov V., “Formation of vortex clusters on a sphere”, Nonlinear Proc. Geophys., 8 (2001), 9–19 | DOI

[11] Yatsuyanagi Yu., Kiwamoto Ya., Tomita H., Sano M. M., Yoshida T., and Ebisuzaki T., “Dynamics of two-sign point vortices in positive and negative temperature state”, Phys. Rev. Lett., 94 (2005), 054502, 4 pp. | DOI

[12] Yoshida T., Sano M. M., “Numerical simulation of vortex crystals and merging in $N$-point vortex systems with circular boundary”, J. Phys. Soc. Japan, 74 (2005), 587–598 | DOI | Zbl

[13] Chavanis P. H., Lemou M., “Kinetic theory of point vortices in two dimensions: Analytical results and numerical simulations”, Eur. Phys. J. B, 59:2 (2007), 217–247 | DOI | MR | Zbl

[14] Borisov A. V., Mamaev I. S., Matematicheskie metody dinamiki vikhrevykh struktur, Inst. kompyutern. issled., M.–Izhevsk, 2005, 368 pp.

[15] Weiss J. B., McWilliams J. C., “Nonergodicity of point vortices”, Phys. Fluids, 3:5 (1991), 835–844 | DOI | MR | Zbl

[16] Kizner Z., Khvoles R., “The tripole vortex: Experimental evidence and explicit solutions”, Phys. Rev. E, 70 (2004), 016307, 4 pp. | DOI | MR

[17] Mitchell T. B., Rossi L. F., “The evolution of Kirchhoff elliptic vortices”, Phys. Fluids, 20:5 (2008), 054103, 12 pp. | DOI | Zbl

[18] Guo Y., Hallstrom C., Spirn D., “Dynamics near an unstable Kirchhoff ellipse”, Comm. Math. Phys., 245 (2004), 297–354 | DOI | MR | Zbl