Problems of stability and asymptotic behavior of vortex patches on the plane
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 2, pp. 327-343.

Voir la notice de l'article provenant de la source Math-Net.Ru

With the help of mathematical modelling, we study the dynamics of many point vortices system on the plane. For this system, we consider the following cases: – vortex rings with outer radius $r=1$ and variable inner radius $r_0$, – vortex ellipses with semiaxes $a$, $b$. The emphasis is on the analysis of the asymptotic ($t\to\infty$) behavior of the system and on the verification of the stability criteria for vorticity continuous distributions.
Keywords: vortex dynamics, hydrodynamics, asymptotic behavior.
Mots-clés : point vortex
@article{ND_2010_6_2_a6,
     author = {V. V. Vaskin and A. V. Vaskina and I. S. Mamaev},
     title = {Problems of stability and asymptotic behavior of vortex patches on the plane},
     journal = {Russian journal of nonlinear dynamics},
     pages = {327--343},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_2_a6/}
}
TY  - JOUR
AU  - V. V. Vaskin
AU  - A. V. Vaskina
AU  - I. S. Mamaev
TI  - Problems of stability and asymptotic behavior of vortex patches on the plane
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 327
EP  - 343
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_2_a6/
LA  - ru
ID  - ND_2010_6_2_a6
ER  - 
%0 Journal Article
%A V. V. Vaskin
%A A. V. Vaskina
%A I. S. Mamaev
%T Problems of stability and asymptotic behavior of vortex patches on the plane
%J Russian journal of nonlinear dynamics
%D 2010
%P 327-343
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_2_a6/
%G ru
%F ND_2010_6_2_a6
V. V. Vaskin; A. V. Vaskina; I. S. Mamaev. Problems of stability and asymptotic behavior of vortex patches on the plane. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 2, pp. 327-343. http://geodesic.mathdoc.fr/item/ND_2010_6_2_a6/

[1] Onsager L., “Statistical hydrodynamics”, Nuovo Cimento, 6, suppl. (1949), 279–287 | DOI | MR

[2] Montgomery D., Joyce G., “Statistical mechanics of negative temperature states”, Phys. Fluids, 17:6 (1974), 1139–1145 | DOI | MR

[3] Kozlov V. V., “Uravnenie vikhrya 2D-gidrodinamiki, statsionarnoe kineticheskoe uravnenie Vlasova i razvitaya turbulentnost”, Nelineinaya dinamika, 2:4 (2006), 425–434 | MR

[4] Helmholtz H., “Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen”, J. Reine Angew. Math., 55 (1858), 25–55 | DOI | Zbl

[5] Kirchhoff G., Vorlesungen über mathematische Physik, Mechanik, Leipzig, 1874

[6] Strett Dzh. V. (lord Relei), Teoriya zvuka, v. II, GITTL, M., 1955, 476 pp.

[7] Drazin F., Vvedenie v teoriyu gidrodinamicheskoi ustoichivosti, Fizmatlit, M., 2005, 288 pp.

[8] Love A. E. H., “On the stability of certain vortex motions”, Proc. London Math. Soc., 25 (1894), 18–42 | DOI

[9] Bühler O., “Statistical mechanics of strong and weak point vortices in a cylinder”, Phys. Fluids, 14:7 (2002), 2139–2149 | DOI | MR

[10] Pavlov V., Buisine D., and Goncharov V., “Formation of vortex clusters on a sphere”, Nonlinear Proc. Geophys., 8 (2001), 9–19 | DOI

[11] Yatsuyanagi Yu., Kiwamoto Ya., Tomita H., Sano M. M., Yoshida T., and Ebisuzaki T., “Dynamics of two-sign point vortices in positive and negative temperature state”, Phys. Rev. Lett., 94 (2005), 054502, 4 pp. | DOI

[12] Yoshida T., Sano M. M., “Numerical simulation of vortex crystals and merging in $N$-point vortex systems with circular boundary”, J. Phys. Soc. Japan, 74 (2005), 587–598 | DOI | Zbl

[13] Chavanis P. H., Lemou M., “Kinetic theory of point vortices in two dimensions: Analytical results and numerical simulations”, Eur. Phys. J. B, 59:2 (2007), 217–247 | DOI | MR | Zbl

[14] Borisov A. V., Mamaev I. S., Matematicheskie metody dinamiki vikhrevykh struktur, Inst. kompyutern. issled., M.–Izhevsk, 2005, 368 pp.

[15] Weiss J. B., McWilliams J. C., “Nonergodicity of point vortices”, Phys. Fluids, 3:5 (1991), 835–844 | DOI | MR | Zbl

[16] Kizner Z., Khvoles R., “The tripole vortex: Experimental evidence and explicit solutions”, Phys. Rev. E, 70 (2004), 016307, 4 pp. | DOI | MR

[17] Mitchell T. B., Rossi L. F., “The evolution of Kirchhoff elliptic vortices”, Phys. Fluids, 20:5 (2008), 054103, 12 pp. | DOI | Zbl

[18] Guo Y., Hallstrom C., Spirn D., “Dynamics near an unstable Kirchhoff ellipse”, Comm. Math. Phys., 245 (2004), 297–354 | DOI | MR | Zbl