Forced synchronization of periodic oscillations in a system with phase multistability
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 2, pp. 277-289.

Voir la notice de l'article provenant de la source Math-Net.Ru

The phenomenon of forced synchronization of periodic oscillations in the multistable system is studied by the example of two linear coupled modified oscillators with inertial nonlinearity. It was found out that external forcing at certain amplitudes can sufficiently change the structure of the phase space of the system. As a result, the synchronous regime breaking for in-phase and non-in-phase oscillations proceeds in accordance with different scenarios.
Keywords: synchronization, multistability.
@article{ND_2010_6_2_a3,
     author = {S. Koblyanskiy and A. Shabunin and V. Astakhov},
     title = {Forced synchronization of periodic oscillations in a system with phase multistability},
     journal = {Russian journal of nonlinear dynamics},
     pages = {277--289},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_2_a3/}
}
TY  - JOUR
AU  - S. Koblyanskiy
AU  - A. Shabunin
AU  - V. Astakhov
TI  - Forced synchronization of periodic oscillations in a system with phase multistability
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 277
EP  - 289
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_2_a3/
LA  - ru
ID  - ND_2010_6_2_a3
ER  - 
%0 Journal Article
%A S. Koblyanskiy
%A A. Shabunin
%A V. Astakhov
%T Forced synchronization of periodic oscillations in a system with phase multistability
%J Russian journal of nonlinear dynamics
%D 2010
%P 277-289
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_2_a3/
%G ru
%F ND_2010_6_2_a3
S. Koblyanskiy; A. Shabunin; V. Astakhov. Forced synchronization of periodic oscillations in a system with phase multistability. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 2, pp. 277-289. http://geodesic.mathdoc.fr/item/ND_2010_6_2_a3/

[1] Appleton E. V., “The automatic synchronization of triode oscillator”, Proc. Cambridge Phil. Soc., 21 (1922), 231–248

[2] Van der Pol B., “Forced oscillations in a circuit with non-linear resistance”, Phil. Mag., 3 (1927), 64–80

[3] Andronov A. A., Vitt A. A., “K matematicheskoi teorii zakhvatyvaniya”, Zhurn. prikl. fiziki, 7:4 (1930), 3–20 | Zbl

[4] Andronov A. A., Vitt A. A., Sobranie trudov, AN SSSR, M., 1930, 70–84

[5] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978, 304 pp.

[6] Blekhman I. I., Sinkhronizatsiya dinamicheskikh sistem, Nauka, M., 1971, 896 pp.

[7] Demyanchenko A. G., Sinkhronizatsiya generatorov garmonicheskikh kolebanii, Energiya, M., 1976, 240 pp.

[8] Blekhman I. I., Sinkhronizatsiya v prirode i tekhnike, Nauka, M., 1981, 352 pp.

[9] Blekhman I. I., Landa P. S., Rosenblum M. G., “Synchronization and chaotization in interacting dynamical systems”, Appl. Mech. Rev., 11:1 (1995), 733–752 | DOI

[10] Anischenko V. S., Vadivasova T. E., “Sinkhronizatsiya avtokolebanii i kolebanii, indutsirovannykh shumom”, Radiotekhnika i elektronika, 47 (2002), 133–165

[11] Pikovskii A., Rozenblyum M., Kurts Yu., Sinkhronizatsiya: Fundamentalnoe nelineinoe yavlenie, Tekhnosfera, M., 2003, 496 pp.

[12] Pisarchik A. N., Jaimes-Reátegui R., Villalobos-Salazar J. R., García-López J. H., and Boccaletti S., “Synchronization of chaotic systems with coexisting attractors”, Phys. Rev. Lett., 96 (2006), 244102, 4 pp. | DOI

[13] Astakhov V. V., Bezruchko B. P., Erastova E. N., Seleznev E. P., “Formy kolebanii i ikh evolyutsiya v dissipativno svyazannykh feigenbaumovskikh sistemakh”, ZhTF, 60:10 (1990), 19–26

[14] Astakhov V. V., Bezruchko B. P., Gulyaev Yu. P., Seleznev E. P., “Multistabilnye sostoyaniya v dissipativno svyazannykh feigenbaumovskikh sistemakh”, Pisma v ZhTF, 15:3 (1989), 60–65 | MR

[15] Astakhov V. V., Bezruchko B. P., Ponomarenko V. I., “Formirovanie multistabilnosti, klassifikatsiya izomerov i ikh evolyutsiya v svyazannykh feigenbaumovskikh sistemakh”, Izvestiya VUZov. Radiofizika, 34:1 (1991), 35–38 | Zbl

[16] Anischenko V. S., Slozhnye kolebaniya v prostykh sistemakh, Nauka, M., 1990, 312 pp.

[17] Astakhov V., Shabunin A., Uhm W., Kim S., “Multistability formation and synchronization loss in coupled Hénon maps: Two sides of the single bifurcational mechanism”, Phys. Rev. E, 63 (2001), 056212, 9 pp. | DOI

[18] AUTO: Software for continuation and bifurcation problems in ordinary differention equations, http://cmvl.cs.concordia.ca/auto/