Visualization of phase trajectories of the Rikitake dynamic system
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 2, pp. 255-265.

Voir la notice de l'article provenant de la source Math-Net.Ru

In paper the computer research of four-dimensional dynamic system with three parameters adequately describing behavior of model coupled Dynamo in view of viscous friction is carried out. Is shown, that in this system there are five equilibrium states: four stable are focuses–node and one is saddle $(3,1)$. Are established the bifurcations of the spatial overwound cycles appropriate to doubling of the period of oscillations dynamic variable and resulting to chaotic oscillations at increase of the relation of factors friction.
Keywords: Rikitake system, equilibrium states
Mots-clés : limit cycles, chaos.
@article{ND_2010_6_2_a1,
     author = {V. I. Potapov},
     title = {Visualization of phase trajectories of the {Rikitake} dynamic system},
     journal = {Russian journal of nonlinear dynamics},
     pages = {255--265},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_2_a1/}
}
TY  - JOUR
AU  - V. I. Potapov
TI  - Visualization of phase trajectories of the Rikitake dynamic system
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 255
EP  - 265
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_2_a1/
LA  - ru
ID  - ND_2010_6_2_a1
ER  - 
%0 Journal Article
%A V. I. Potapov
%T Visualization of phase trajectories of the Rikitake dynamic system
%J Russian journal of nonlinear dynamics
%D 2010
%P 255-265
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_2_a1/
%G ru
%F ND_2010_6_2_a1
V. I. Potapov. Visualization of phase trajectories of the Rikitake dynamic system. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 2, pp. 255-265. http://geodesic.mathdoc.fr/item/ND_2010_6_2_a1/

[1] Rikitaki T., Elektromagnetizm i vnutrennee stroenie Zemli, Nedra, L., 1968, 332 pp.

[2] Yanovskii B. M., Zemnoi magnetizm, LGU, L., 1978, 592 pp.

[3] Bautin N. N., Povedenie dinamicheskikh sistem vblizi granits oblasti ustoichivosti, Nauka, M., 1984, 176 pp.

[4] Kuk A., Roberts P., “Sistema dvukhdiskovogo dinamo Rikitaki”, Strannye attraktory, Sb. st., pod red. Ya. G. Sinaya, L. P. Shilnikova, Mir, M., 1981, 164–292

[5] Ershov S. V., Malinetskii G. G., Rusmaikin A. A., “A generalized two-disk dynamo model”, Geophys. Astrophys. Fluid Dynam., 47 (1989), 251–277 | DOI | MR

[6] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, Ch. 1, Inst. kompyutern. issled., M.–Izhevsk, 2004, 416 pp.; Шильников Л. П., Шильников А. Л., Тураев Д. В., Чуа Л., Методы качественной теории в нелинейной динамике, Ч. 2, Инст. компьютерн. исслед., М.–Ижевск, 2009, 546 с.

[7] Tondl A., Nelineinye kolebaniya mekhanicheskikh sistem, Mir, M., 1973, 334 pp.

[8] Potapov V. I., Matematicheskie modeli nelineinykh dinamicheskikh yavlenii, ikh chislennyi i kachestvennyi analiz, Norilskii industr. in-t, Norilsk, 2005