Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2010_6_1_a7, author = {A. V. Borisov and A. A. Kilin and I. S. Mamaev}, title = {Hamiltonian representation and integrability of the {Suslov} problem}, journal = {Russian journal of nonlinear dynamics}, pages = {127--142}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2010_6_1_a7/} }
TY - JOUR AU - A. V. Borisov AU - A. A. Kilin AU - I. S. Mamaev TI - Hamiltonian representation and integrability of the Suslov problem JO - Russian journal of nonlinear dynamics PY - 2010 SP - 127 EP - 142 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2010_6_1_a7/ LA - ru ID - ND_2010_6_1_a7 ER -
A. V. Borisov; A. A. Kilin; I. S. Mamaev. Hamiltonian representation and integrability of the Suslov problem. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 127-142. http://geodesic.mathdoc.fr/item/ND_2010_6_1_a7/
[1] Suslov G. K., Teoreticheskaya mekhanika, Gostekhizdat, M.-L., 1946, 655 pp.
[2] Voronets P. V., “Uravneniya dvizheniya tverdogo tela, katyaschegosya bez skolzheniya po nepodvizhnoi ploskosti”, Izv. Kiev. un-ta Sv. Vladimira, 43:1 (1903), 1–66
[3] Kozlov V. V., “K teorii integrirovaniya uravnenii negolonomnoi mekhaniki”, Uspekhi mekhaniki, 8:3 (1985), 85–101 | MR
[4] Kozlov V. V., Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, Izd-vo UdGU, Izhevsk, 1995, 432 pp. | MR | Zbl
[5] Kharlamova-Zabelina E. I., “Dvizhenie tverdogo tela vokrug nepodvizhnoi tochki pri nalozhenii negolonomnoi svyazi”, Tr. Donetsk. industr. in-ta, 20:1 (1957), 69–75
[6] Borisov A. V., Dudoladov S. L., “Kovalevskaya exponents and Poissonian structures”, Regul. Chaotic Dyn., 4:3 (1999), 13–20 | DOI | MR | Zbl
[7] Olver P., Application of Lie groups to differential equations, Springer, New York, 1986 | MR | MR | Zbl
[8] Tatarinov Ya. V., “Razdelyayuschie peremennye i novye topologicheskie yavleniya v golonomnykh i negolonomnykh sistemakh”, Trudy seminara po vektorn. i tenzorn. analizu, 23 (1988), 160–174 | MR | Zbl
[9] Kharlamova E. I., “Dvizhenie po inertsii girostata, podchinennogo negolonomnoi svyazi”, MTT, 1971, no. 3, 130–132
[10] Kharlamov P. V., “Girostat s negolonomnoi svyazyu”, MTT, 1971, no. 3, 120–130
[11] Fedorov Yu. N., Kozlov V. V., “Various aspects of $n$-dimensional rigid body dynamics”, Amer. Math. Soc. Transl. Ser. 2, 168, 1995, 141–171 | MR | Zbl
[12] Jovanović B., “Non-holonomic geodesic flows on Lie groups and the integrable Suslov problem on $SO(4)$”, J. Phys. A, 31 (1998), 1415–1422 | DOI | MR | Zbl
[13] Zenkov D. V., Bloch A. M., “Dynamics of the $n$-dimensional Suslov problem”, J. Geom. Phys., 34 (2000), 121–136 | DOI | MR | Zbl
[14] Jovanović B., “Some multidimensional integrable cases of nonholonomic rigid body dynamics”, Regul. Chaotic Dyn., 8:1 (2003), 125–132 | DOI | MR | Zbl
[15] Borisov A. V., Tsygvintsev A. V., “Pokazateli Kovalevskoi i integriruemye sistemy klassicheskoi dinamiki: I, II”, Regulyarnaya i khaoticheskaya dinamika, 1:1 (1996), 15–37 | MR
[16] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, Inst. kompyuter. issled., M.-Izhevsk, 2005, 576 pp. | MR
[17] Kozlov V. V., Furta S. D., Asimptotiki reshenii silno nelineinykh sistem differentsialnykh uravnenii, Izd-vo MGU, M., 1996, 244 pp. | MR | Zbl
[18] Fedorov Yu. N., Maciejewski A. J., Przybylska M., “Suslov problem: integrability, meromorphic and hypergeometric solutions”, Nonlinearity, 22 (2009), 2231–2259 | DOI | MR | Zbl
[19] Vagner G., “Geometricheskaya interpretatsiya dvizheniya negolonomnykh dinamicheskikh sistem”, Trudy seminara po vektorn. i tenzorn. analizu, 1941, no. 5, 301–327 | MR | Zbl
[20] Borisov A. V., Mamaev I. S., “Shar Chaplygina, zadacha Suslova i zadacha Veselovoi, integriruemost i realizatsiya svyazei”, Negolonomnye dinamicheskie sistemy: Integriruemost, khaos, strannye attraktory, eds. A. V. Borisov, I. S. Mamaev, Inst. kompyuter. issled., M.-Izhevsk, 2002, 324 pp. | MR | Zbl
[21] Dragović V., Gajić B., Jovanović B., “Generalizations of classical integrable nonholonomic rigid body systems”, J. Phys. A, 31 (1998), 9861–9869 | DOI | MR | Zbl
[22] Borisov A. V., Mamaev I. S., “The rolling motion of a rigid body on a plane and a sphere: Hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 177–200 | DOI | MR | Zbl
[23] Borisov A. V., Mamaev I. S., Kilin A. A., “The rolling motion of a ball on a surface: New integrals and hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 201–219 | DOI | MR | Zbl
[24] Fuller F. B., “The writhing number of a space curve”, Proc. Nat. Acad. Sci. USA, 68:4 (1971), 815–819 | DOI | MR | Zbl
[25] Borisov A. V., Mamaev I. S., “Zakony sokhraneniya, ierarkhiya dinamiki i yavnoe integrirovanie negolonomnykh sistem”, Nelineinaya dinamika, 4:3 (2008), 223–280
[26] Kozlov V. V., “Realizatsiya neintegriruemykh svyazei v klassicheskoi mekhanike”, DAN SSSR, 272:3 (1983), 550–554 | MR | Zbl
[27] Kozlova Z. P., “K zadache Suslova”, Izv. AN SSSR, MTT, 1989, no. 1, 13–16
[28] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, Ch. 1, Inst. kompyuter. issled., M.-Izhevsk, 2004, 416 pp. | Zbl
[29] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, Ch. 2, NITs “Regulyarnaya i khaoticheskaya dinamika”, Inst. kompyuter. issled., M.-Izhevsk, 2009, 548 pp.
[30] Borisov A. V., Mamaev I. S., “Strannye attraktory v dinamike keltskikh kamnei”, Uspekhi fizich. nauk, 173:4 (2003), 407–418
[31] Darboux G., Leçons sur la théorie générale des surfaces, Paris, 1889, 522 pp.