Hamiltonian representation and integrability of the Suslov problem
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 127-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problems of Hamiltonian representation and integrability of the nonholonomic Suslov system and its generalization suggested by S. A. Chaplygin. These aspects are very important for understanding the dynamics and qualitative analysis of the system. In particular, they are related to the nontrivial asymptotic behaviour (i.e. to some scattering problem). The paper presents a general approach based on the study of the hierarchy of dynamical behaviour of nonholonomic systems.
Keywords: Hamiltonian system, nonholonomic constraint, invariant measure, integrability.
Mots-clés : Poisson bracket
@article{ND_2010_6_1_a7,
     author = {A. V. Borisov and A. A. Kilin and I. S. Mamaev},
     title = {Hamiltonian representation and integrability of the {Suslov} problem},
     journal = {Russian journal of nonlinear dynamics},
     pages = {127--142},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_1_a7/}
}
TY  - JOUR
AU  - A. V. Borisov
AU  - A. A. Kilin
AU  - I. S. Mamaev
TI  - Hamiltonian representation and integrability of the Suslov problem
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 127
EP  - 142
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_1_a7/
LA  - ru
ID  - ND_2010_6_1_a7
ER  - 
%0 Journal Article
%A A. V. Borisov
%A A. A. Kilin
%A I. S. Mamaev
%T Hamiltonian representation and integrability of the Suslov problem
%J Russian journal of nonlinear dynamics
%D 2010
%P 127-142
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_1_a7/
%G ru
%F ND_2010_6_1_a7
A. V. Borisov; A. A. Kilin; I. S. Mamaev. Hamiltonian representation and integrability of the Suslov problem. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 127-142. http://geodesic.mathdoc.fr/item/ND_2010_6_1_a7/

[1] Suslov G. K., Teoreticheskaya mekhanika, Gostekhizdat, M.-L., 1946, 655 pp.

[2] Voronets P. V., “Uravneniya dvizheniya tverdogo tela, katyaschegosya bez skolzheniya po nepodvizhnoi ploskosti”, Izv. Kiev. un-ta Sv. Vladimira, 43:1 (1903), 1–66

[3] Kozlov V. V., “K teorii integrirovaniya uravnenii negolonomnoi mekhaniki”, Uspekhi mekhaniki, 8:3 (1985), 85–101 | MR

[4] Kozlov V. V., Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, Izd-vo UdGU, Izhevsk, 1995, 432 pp. | MR | Zbl

[5] Kharlamova-Zabelina E. I., “Dvizhenie tverdogo tela vokrug nepodvizhnoi tochki pri nalozhenii negolonomnoi svyazi”, Tr. Donetsk. industr. in-ta, 20:1 (1957), 69–75

[6] Borisov A. V., Dudoladov S. L., “Kovalevskaya exponents and Poissonian structures”, Regul. Chaotic Dyn., 4:3 (1999), 13–20 | DOI | MR | Zbl

[7] Olver P., Application of Lie groups to differential equations, Springer, New York, 1986 | MR | MR | Zbl

[8] Tatarinov Ya. V., “Razdelyayuschie peremennye i novye topologicheskie yavleniya v golonomnykh i negolonomnykh sistemakh”, Trudy seminara po vektorn. i tenzorn. analizu, 23 (1988), 160–174 | MR | Zbl

[9] Kharlamova E. I., “Dvizhenie po inertsii girostata, podchinennogo negolonomnoi svyazi”, MTT, 1971, no. 3, 130–132

[10] Kharlamov P. V., “Girostat s negolonomnoi svyazyu”, MTT, 1971, no. 3, 120–130

[11] Fedorov Yu. N., Kozlov V. V., “Various aspects of $n$-dimensional rigid body dynamics”, Amer. Math. Soc. Transl. Ser. 2, 168, 1995, 141–171 | MR | Zbl

[12] Jovanović B., “Non-holonomic geodesic flows on Lie groups and the integrable Suslov problem on $SO(4)$”, J. Phys. A, 31 (1998), 1415–1422 | DOI | MR | Zbl

[13] Zenkov D. V., Bloch A. M., “Dynamics of the $n$-dimensional Suslov problem”, J. Geom. Phys., 34 (2000), 121–136 | DOI | MR | Zbl

[14] Jovanović B., “Some multidimensional integrable cases of nonholonomic rigid body dynamics”, Regul. Chaotic Dyn., 8:1 (2003), 125–132 | DOI | MR | Zbl

[15] Borisov A. V., Tsygvintsev A. V., “Pokazateli Kovalevskoi i integriruemye sistemy klassicheskoi dinamiki: I, II”, Regulyarnaya i khaoticheskaya dinamika, 1:1 (1996), 15–37 | MR

[16] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, Inst. kompyuter. issled., M.-Izhevsk, 2005, 576 pp. | MR

[17] Kozlov V. V., Furta S. D., Asimptotiki reshenii silno nelineinykh sistem differentsialnykh uravnenii, Izd-vo MGU, M., 1996, 244 pp. | MR | Zbl

[18] Fedorov Yu. N., Maciejewski A. J., Przybylska M., “Suslov problem: integrability, meromorphic and hypergeometric solutions”, Nonlinearity, 22 (2009), 2231–2259 | DOI | MR | Zbl

[19] Vagner G., “Geometricheskaya interpretatsiya dvizheniya negolonomnykh dinamicheskikh sistem”, Trudy seminara po vektorn. i tenzorn. analizu, 1941, no. 5, 301–327 | MR | Zbl

[20] Borisov A. V., Mamaev I. S., “Shar Chaplygina, zadacha Suslova i zadacha Veselovoi, integriruemost i realizatsiya svyazei”, Negolonomnye dinamicheskie sistemy: Integriruemost, khaos, strannye attraktory, eds. A. V. Borisov, I. S. Mamaev, Inst. kompyuter. issled., M.-Izhevsk, 2002, 324 pp. | MR | Zbl

[21] Dragović V., Gajić B., Jovanović B., “Generalizations of classical integrable nonholonomic rigid body systems”, J. Phys. A, 31 (1998), 9861–9869 | DOI | MR | Zbl

[22] Borisov A. V., Mamaev I. S., “The rolling motion of a rigid body on a plane and a sphere: Hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 177–200 | DOI | MR | Zbl

[23] Borisov A. V., Mamaev I. S., Kilin A. A., “The rolling motion of a ball on a surface: New integrals and hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 201–219 | DOI | MR | Zbl

[24] Fuller F. B., “The writhing number of a space curve”, Proc. Nat. Acad. Sci. USA, 68:4 (1971), 815–819 | DOI | MR | Zbl

[25] Borisov A. V., Mamaev I. S., “Zakony sokhraneniya, ierarkhiya dinamiki i yavnoe integrirovanie negolonomnykh sistem”, Nelineinaya dinamika, 4:3 (2008), 223–280

[26] Kozlov V. V., “Realizatsiya neintegriruemykh svyazei v klassicheskoi mekhanike”, DAN SSSR, 272:3 (1983), 550–554 | MR | Zbl

[27] Kozlova Z. P., “K zadache Suslova”, Izv. AN SSSR, MTT, 1989, no. 1, 13–16

[28] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, Ch. 1, Inst. kompyuter. issled., M.-Izhevsk, 2004, 416 pp. | Zbl

[29] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, Ch. 2, NITs “Regulyarnaya i khaoticheskaya dinamika”, Inst. kompyuter. issled., M.-Izhevsk, 2009, 548 pp.

[30] Borisov A. V., Mamaev I. S., “Strannye attraktory v dinamike keltskikh kamnei”, Uspekhi fizich. nauk, 173:4 (2003), 407–418

[31] Darboux G., Leçons sur la théorie générale des surfaces, Paris, 1889, 522 pp.