Hamiltonian representation and integrability of the Suslov problem
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 127-142
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problems of Hamiltonian representation and integrability of the nonholonomic Suslov system and its generalization suggested by S. A. Chaplygin. These aspects are very important for understanding the dynamics and qualitative analysis of the system. In particular, they are related to the nontrivial asymptotic behaviour (i.e. to some scattering problem). The paper presents a general approach based on the study of the hierarchy of dynamical behaviour of nonholonomic systems.
Keywords:
Hamiltonian system, nonholonomic constraint, invariant measure, integrability.
Mots-clés : Poisson bracket
Mots-clés : Poisson bracket
@article{ND_2010_6_1_a7,
author = {A. V. Borisov and A. A. Kilin and I. S. Mamaev},
title = {Hamiltonian representation and integrability of the {Suslov} problem},
journal = {Russian journal of nonlinear dynamics},
pages = {127--142},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ND_2010_6_1_a7/}
}
TY - JOUR AU - A. V. Borisov AU - A. A. Kilin AU - I. S. Mamaev TI - Hamiltonian representation and integrability of the Suslov problem JO - Russian journal of nonlinear dynamics PY - 2010 SP - 127 EP - 142 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2010_6_1_a7/ LA - ru ID - ND_2010_6_1_a7 ER -
A. V. Borisov; A. A. Kilin; I. S. Mamaev. Hamiltonian representation and integrability of the Suslov problem. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 127-142. http://geodesic.mathdoc.fr/item/ND_2010_6_1_a7/